Citation from the publications of

Lossin, Christoph; Rhodes, Thomas H; Desai, Reshma R; Vanoye, Carlos G; Wang, Dao; Carniciu, Sanda; Devinsky, Orrin; George, Alfred L Jr
"Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1A"
Journal of neuroscience 2003 Dec 10; 23(36):11289-11295
Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel alpha1 subunit (NaV1.1), are associated with at least two forms of epilepsy, generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). We examined the functional properties of four GEFS+ alleles and one SMEI allele using whole-cell patch-clamp analysis of heterologously expressed recombinant human SCN1A. One previously reported GEFS+ mutation (I1656M) and an additional novel allele (R1657C), both affecting residues in a voltage-sensing S4 segment, exhibited a similar depolarizing shift in the voltage dependence of activation. Additionally, R1657C showed a 50% reduction in current density and accelerated recovery from slow inactivation. Unlike three other GEFS+ alleles that we recently characterized, neither R1657C nor I1656M gave rise to a persistent, noninactivating current. In contrast, two other GEFS+ mutations (A1685V and V1353L) and L986F, an SMEI-associated allele, exhibited complete loss of function. In conclusion, our data provide evidence for a wide spectrum of sodium channel dysfunction in familial epilepsy and demonstrate that both GEFS+ and SMEI can be associated with nonfunctional SCN1A alleles

Check for full text:  

# 60151 (MEDL:14672992)


This publication list a product of the NYU Faculty Bibliography.