Try a new search

Format these results:

Searched for:

person:arakit01

in-biosketch:yes

Total Results:

38


SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations

Paccoud, Romain; Saint-Laurent, Céline; Piccolo, Enzo; Tajan, Mylène; Dortignac, Alizée; Pereira, Ophélie; Le Gonidec, Sophie; Baba, Inès; Gélineau, Adélaïde; Askia, Haoussa; Branchereau, Maxime; Charpentier, Julie; Personnaz, Jean; Branka, Sophie; Auriau, Johanna; Deleruyelle, Simon; Canouil, Mickaël; Beton, Nicolas; Salles, Jean-Pierre; Tauber, Maithé; Weill, Jacques; Froguel, Philippe; Neel, Benjamin G; Araki, Toshiyuki; Heymes, Christophe; Burcelin, Rémy; Castan, Isabelle; Valet, Philippe; Dray, Cédric; Gautier, Emmanuel L; Edouard, Thomas; Pradère, Jean-Philippe; Yart, Armelle
Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.
PMID: 33910978
ISSN: 1946-6242
CID: 4853422

The Noonan Syndrome-linked Raf1L613V mutation drives increased glial number in the mouse cortex and enhanced learning

Holter, Michael C; Hewitt, Lauren T; Koebele, Stephanie V; Judd, Jessica M; Xing, Lei; Bimonte-Nelson, Heather A; Conrad, Cheryl D; Araki, Toshiyuki; Neel, Benjamin G; Snider, William D; Newbern, Jason M
RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice mutants performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function.
PMID: 31017896
ISSN: 1553-7404
CID: 3821652

Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth

Tajan, Mylène; Pernin-Grandjean, Julie; Beton, Nicolas; Gennero, Isabelle; Capilla, Florence; Neel, Benjamin G; Araki, Toshiyuki; Valet, Philippe; Tauber, Maithé; Salles, Jean-Pierre; Yart, Armelle; Edouard, Thomas
Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins.In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.
PMCID:6005060
PMID: 29659837
ISSN: 1460-2083
CID: 3042982

Cellular interplay via cytokine hierarchy causes pathological cardiac hypertrophy in RAF1-mutant Noonan syndrome

Yin, Jiani C; Platt, Mathew J; Tian, Xixi; Wu, Xue; Backx, Peter H; Simpson, Jeremy A; Araki, Toshiyuki; Neel, Benjamin G
Noonan syndrome (NS) is caused by mutations in RAS/ERK pathway genes, and is characterized by craniofacial, growth, cognitive and cardiac defects. NS patients with kinase-activating RAF1 alleles typically develop pathological left ventricular hypertrophy (LVH), which is reproduced in Raf1L613V/+ knock-in mice. Here, using inducible Raf1L613V expression, we show that LVH results from the interplay of cardiac cell types. Cardiomyocyte Raf1L613V enhances Ca2+ sensitivity and cardiac contractility without causing hypertrophy. Raf1L613V expression in cardiomyocytes or activated fibroblasts exacerbates pressure overload-evoked fibrosis. Endothelial/endocardial (EC) Raf1L613V causes cardiac hypertrophy without affecting contractility. Co-culture and neutralizing antibody experiments reveal a cytokine (TNF/IL6) hierarchy in Raf1L613V-expressing ECs that drives cardiomyocyte hypertrophy in vitro. Furthermore, postnatal TNF inhibition normalizes the increased wall thickness and cardiomyocyte hypertrophy in vivo. We conclude that NS-cardiomyopathy involves cardiomyocytes, ECs and fibroblasts, TNF/IL6 signalling components represent potential therapeutic targets, and abnormal EC signalling might contribute to other forms of LVH.
PMCID:5458545
PMID: 28548091
ISSN: 2041-1723
CID: 2574982

Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair

Tiburcy, Malte; Hudson, James E; Balfanz, Paul; Schlick, Susanne; Meyer, Tim; Chang Liao, Mei-Ling; Levent, Elif; Raad, Farah; Zeidler, Sebastian; Wingender, Edgar; Riegler, Johannes; Wang, Mouer; Gold, Joseph D; Kehat, Izhak; Wettwer, Erich; Ravens, Ursula; Dierickx, Pieterjan; van Laake, Linda W; Goumans, Marie Jose; Khadjeh, Sara; Toischer, Karl; Hasenfuss, Gerd; Couture, Larry A; Unger, Andreas; Linke, Wolfgang A; Araki, Toshiyuki; Neel, Benjamin; Keller, Gordon; Gepstein, Lior; Wu, Joseph C; Zimmermann, Wolfram-Hubertus
BACKGROUND: Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. RESULTS: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to beta-adrenergic stimulation mediated via canonical beta1- and beta2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.
PMCID:5501412
PMID: 28167635
ISSN: 1524-4539
CID: 2556102

Ultrasound-based automated carotid lumen diameter/stenosis measurement and its validation system

Araki, T; Kumar, A M; Kumar, P K; Gupta, A; Saba, L; Rajan, J; Lavra, F; Sharma, A M; Shafique, S; Nicolaides, A; Laird, J R; Suri, J S
Objective.-Degree of carotid stenosis is an important predictor to assess risk of stroke. Systolic velocity-based methods for lumen diameter and stenosis measurement are subjective. Image-based methods face a challenge because of low gradients in media and intima walls. Methods.-This article presents AtheroEdgeTM 2.0, a two-stage process for automated carotid lumen diameter measurement that combats the above challenges. Stage one uses spectral analysis based on the hypothesis that far-wall adventitia is brightest. Stage two uses lumen pixel region identification based on the assumption that blood flow has constant density. Using global and local processing, lumen boundaries are detected. This clinical system outputs lumen diameter along with stenosis severity index (SSI). Results.-Our database consists of institutional review board-approved 202 patients (males/ females: 155/47) left and right common carotid artery images (404 images, Toshiba scanner). Two trained neuro radiologists performed manual lumen border tracings using ImgTracerTM software. The coefficient of correlation between automated and two manual readings was 0.91 and 0.92. Dice similarity and Jaccard index were 95.82%, 95.72% and 92.10%, 91.92%, respectively. The mean diameter error between automated and two manual readings was 0.27 +/- 0.26 and 0.26 +/- 0.28 mm, respectively. Precision of merit was 98.05% and 99.03% with respect to two readings. SSI showed 97% accuracy. Conclusions.-The image-based automated carotid lumen diameter and stenosis measurement system is fast, accurate, and reliable.
Copyright
EMBASE:625145933
ISSN: 1544-3167
CID: 4975492

Sticking It to Cancer with Molecular Glue for SHP2

Ran, Hao; Tsutsumi, Ryouhei; Araki, Toshiyuki; Neel, Benjamin G
Much effort has been expended to develop inhibitors against protein-tyrosine phosphatases (PTPs), nearly all of it unsuccessful. A recent report, describing a highly specific, orally bioavailable inhibitor of the PTP oncoprotein SHP2 with in vivo activity, suggests that allostery might provide a way forward for PTP inhibitor development.
PMCID:5558882
PMID: 27505669
ISSN: 1878-3686
CID: 2211692

Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function

Sharma, Parveen; Abbasi, Cynthia; Lazic, Savo; Teng, Allen C T; Wang, Dingyan; Dubois, Nicole; Ignatchenko, Vladimir; Wong, Victoria; Liu, Jun; Araki, Toshiyuki; Tiburcy, Malte; Ackerley, Cameron; Zimmermann, Wolfram H; Hamilton, Robert; Sun, Yu; Liu, Peter P; Keller, Gordon; Stagljar, Igor; Scott, Ian C; Kislinger, Thomas; Gramolini, Anthony O
Membrane proteins are crucial to heart function and development. Here we combine cationic silica-bead coating with shotgun proteomics to enrich for and identify plasma membrane-associated proteins from primary mouse neonatal and human fetal ventricular cardiomyocytes. We identify Tmem65 as a cardiac-enriched, intercalated disc protein that increases during development in both mouse and human hearts. Functional analysis of Tmem65 both in vitro using lentiviral shRNA-mediated knockdown in mouse cardiomyocytes and in vivo using morpholino-based knockdown in zebrafish show marked alterations in gap junction function and cardiac morphology. Molecular analyses suggest that Tmem65 interaction with connexin 43 (Cx43) is required for correct localization of Cx43 to the intercalated disc, since Tmem65 deletion results in marked internalization of Cx43, a shorter half-life through increased degradation, and loss of Cx43 function. Our data demonstrate that the membrane protein Tmem65 is an intercalated disc protein that interacts with and functionally regulates ventricular Cx43.
PMID: 26403541
ISSN: 2041-1723
CID: 1908212

Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome

Lee, Yong-Seok; Ehninger, Dan; Zhou, Miou; Oh, Jun-Young; Kang, Minkyung; Kwak, Chuljung; Ryu, Hyun-Hee; Butz, Delana; Araki, Toshiyuki; Cai, Ying; Balaji, J; Sano, Yoshitake; Nam, Christine I; Kim, Hyong Kyu; Kaang, Bong-Kiun; Burger, Corinna; Neel, Benjamin G; Silva, Alcino J
In Noonan syndrome (NS) 30-50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11(D61G) in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras-extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult Ptpn11(D61G/+) mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.
PMCID:4716736
PMID: 25383899
ISSN: 1097-6256
CID: 1363742

Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants

Wu, Xue; Yin, Jiani; Simpson, Jeremy; Kim, Kyoung-Han; Gu, Shengqing; Hong, Jenny H; Bayliss, Peter; Backx, Peter H; Neel, Benjamin G; Araki, Toshiyuki
Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS-RAF-MEK-extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 ( approximately 3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1(D486N). Raf1(D486N/+) (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1(D486N)-expressing cells compared with controls. RAF1(D486N), as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations.
PMCID:3457534
PMID: 22826437
ISSN: 0270-7306
CID: 1364032