Try a new search

Format these results:

Searched for:

person:as3712

in-biosketch:yes

Total Results:

17


An Overview of Cannabidiol

Sideris, Alexandra; Doan, Lisa V
Cannabidiol (CBD) is one of the most interesting constituents of cannabis, garnering significant attention in the medical community in recent years due to its proven benefit for reducing refractory seizures in pediatric patients. Recent legislative changes in the United States have made CBD readily available to the general public, with up to 14% of adults in the United States having tried it in 2019. CBD is used to manage a myriad of symptoms, including anxiety, pain, and sleep disturbances, although rigorous evidence for these indications is lacking. A significant advantage of CBD over the other more well-known cannabinoid delta-9-tetrahydroncannabinol (THC) is that CBD does not produce a "high." As patients increasingly self-report its use to manage their medical conditions, and as the opioid epidemic continues to drive the quest for alternative pain management approaches, the aims of this narrative review are to provide a broad overview of the discovery, pharmacology, and molecular targets of CBD, its purported and approved neurologic indications, evidence for its analgesic potential, regulatory implications for patients and providers, and future research needs.
PMID: 38108806
ISSN: 1526-7598
CID: 5612642

BDNF produced by cerebral microglia promotes cortical plasticity and pain hypersensitivity after peripheral nerve injury

Huang, Lianyan; Jin, Jianhua; Chen, Kai; You, Sikun; Zhang, Hongyang; Sideris, Alexandra; Norcini, Monica; Recio-Pinto, Esperanza; Wang, Jing; Gan, Wen-Biao; Yang, Guang
Peripheral nerve injury-induced mechanical allodynia is often accompanied by abnormalities in the higher cortical regions, yet the mechanisms underlying such maladaptive cortical plasticity remain unclear. Here, we show that in male mice, structural and functional changes in the primary somatosensory cortex (S1) caused by peripheral nerve injury require neuron-microglial signaling within the local circuit. Following peripheral nerve injury, microglia in the S1 maintain ramified morphology and normal density but up-regulate the mRNA expression of brain-derived neurotrophic factor (BDNF). Using in vivo two-photon imaging and Cx3cr1CreER;Bdnfflox mice, we show that conditional knockout of BDNF from microglia prevents nerve injury-induced synaptic remodeling and pyramidal neuron hyperactivity in the S1, as well as pain hypersensitivity in mice. Importantly, S1-targeted removal of microglial BDNF largely recapitulates the beneficial effects of systemic BDNF depletion on cortical plasticity and allodynia. Together, these findings reveal a pivotal role of cerebral microglial BDNF in somatosensory cortical plasticity and pain hypersensitivity.
PMID: 34292944
ISSN: 1545-7885
CID: 4948532

Assessing the current status of continuous peripheral nerve blocks in clinical practice in North America, a survey approach [Letter]

Adhikary, S; Sideris, A; Hargett, M; Elkassabany, N M; Mariano, E R; Liu, J
EMBASE:2005939750
ISSN: 0952-8180
CID: 4470612

Minocycline Before Aortic Occlusion Reduces Hindlimb Motor Impairment, Attenuates Spinal Cord Damage and Spinal Astrocytosis, and Preserve Neuronal Cytoarchitecture in the Rat

Drenger, Benjamin; Blanck, Thomas J J; Piskoun, Boris; Jaffrey, E; Recio-Pinto, Esperanza; Sideris, Alexandra
OBJECTIVES/OBJECTIVE:Spinal cord ischemia secondary to trauma or a vascular occlusive event is a threatening phenomenon. The neuroprotective properties of minocycline have been shown in several models of central nervous system diseases and after spinal cord ischemia; however, the benefit of using the drug requires additional confirmation in different animal models. Astrocytes are essential as regulators of neuronal functions and for providing nutrients. The authors hypothesized that astrocytes in the spinal cord may be an important target for minocycline action after ischemia and thus in the prevention of secondary spreading damage. DESIGN/METHODS:A prospective, randomized animal study. SETTING/METHODS:University research laboratory, single institution. PARTICIPANTS/METHODS:Adult male Sprague Dawley rats, weighing between 400 and 450 g. INTERVENTIONS/METHODS:A model of spinal cord ischemia in the rat was used for this study to determine whether a single, high-dose (10 mg/kg) of minocycline protects against damage to the neuronal cytoskeleton, both in the white and gray matter, and whether it reduces glial fibrillary acidic protein levels, which is an index for prevention of astrocyte activation during ischemia. Thirty minutes before thoracic aorta occlusion, minocycline was administered for 18 minutes using a 2 F Fogarty catheter. MEASUREMENTS AND MAIN RESULTS/RESULTS:Minocycline given prophylactically significantly mitigated severe hindlimb motor impairment and reduced glial fibrillary acidic protein plus astrocytosis in both the white and gray matter of the spinal cord, caudal to the occlusion. Neuronal histologic cytoarchitecture, which was severely and significantly compromised in control animals, was preserved in the minocycline-treated animals. CONCLUSIONS:This study's data imply that minocycline may attenuate reactive astrocytosis in response to injury with better neurologic outcome in a model of spinal cord ischemia in rats. The data suggest that future use of minocycline, clinically, might be advantageous in surgeries with a potential risk for paraplegia due to spinal cord ischemia.
PMID: 30195965
ISSN: 1532-8422
CID: 3278102

Intrathecal Injection of miR-133b-3p or miR-143-3p Prevents the Development of Persistent Cold and Mechanical Allodynia Following a Peripheral Nerve Injury in Rats

Norcini, Monica; Choi, Daniel; Lu, Helen; Cano, Mercedes; Piskoun, Boris; Hurtado, Alicia; Sideris, Alexandra; Blanck, Thomas J J; Recio-Pinto, Esperanza
In DRG an increase in miR-133b-3p, miR-143-3p, and miR-1-3p correlates with the lack of development of neuropathic pain following a peripheral nerve injury. Using lentiviral (LV) vectors we found that a single injection of LV-miR-133b-3p or LV-miR-143-3p immediately after a peripheral nerve injury prevented the development of sustained mechanical and cold allodynia. Injection of LV-miR-133b-3p or LV-miR-143-3p by themselves or in combination, on day 3 post-injury produced a partial and transient reduction in mechanical allodynia and a sustained decrease in cold allodynia. Injection of LV-miR-1-3p has no effect. Co-injection of LV-miR-1a with miR-133b-3p or miR-143-3p on day 3 post-injury produced a sustained decrease in mechanical and cold allodynia. In DRG cultures, miR-133b-3p and miR-143-3p but not miR-1-3p, enhanced the depolarization-evoked cytoplasmic calcium increase. Using 3'UTR target clones containing a Gaussian luciferase reporter gene we found that with the 3'UTR-Scn2b, miR-133-3p and miR-143-3p reduced the expression while miR-1-3p enhanced the expression of the reporter gene. With the 3'UTR-TRPM8, miR-133-3p and miR-143-3p reduced the expression and miR-1-3p had no effect. With the 3'UTR-Piezo2, miR-133-3p increased the expression while miR-143-3p and miR-1-3p had no effect. LV-miR133b-3p, LV-miR-143-3p and LV-miR1a-3p reduced Scn2b-mRNA and Piezo2-mRNA. LV-miR133b-3p and LV-miR-143-3p reduced TRPM8-mRNA. LV-miR-133b-3p and LV-miR-143-3p prevent the development of chronic pain when injected immediately after the injury, but are only partially effective when injected at later times. LV-miR-1a-3p had no effect on pain, but complemented the actions of LV-miR-133b-3p or LV-miR-143-3p resulting in a sustained reversal of pain when co-injected 3 days following nerve injury.
PMID: 30018017
ISSN: 1873-7544
CID: 3200762

Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36

Pérez Armendariz, E Martha; Norcini, Monica; Hernández-Tellez, Beatriz; Castell-Rodríguez, Andrés; Coronel-Cruz, Cristina; Alquicira, Raquel Guerrero; Sideris, Alexandra; Recio-Pinto, Esperanza
Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury.
PMID: 29224922
ISSN: 1618-0372
CID: 3010522

New York Physicians' Perspectives and Knowledge of the State Medical Marijuana Program

Sideris, Alexandra; Khan, Fahad; Boltunova, Alina; Cuff, Germaine; Gharibo, Christopher; Doan, Lisa V
Introduction: In 2014, New York (NY) became the 23rd state to legalize medical marijuana (MMJ). The purpose of this survey was to collect data about practicing NY physicians' comfort level, opinions, and experience in recommending or supporting patient use of MMJ. Materials and Methods: An anonymous web-based survey was distributed to medical societies and to academic departments in medical schools within NY. Results: A total of 164 responses were analyzed. Physician participants were primarily located in New York City and surrounding areas. The majority (71%) agreed that MMJ should be an option available to patients. Most respondents were not registered to certify MMJ in NY, but were willing to refer patients to registered physicians. Common reasons for not registering included specialty and federal status of cannabis. More than 75% reported having patients who used cannabis for symptom control, and 50% reported having patients who inquired about MMJ within the past year. Most respondents are willing to discuss MMJ with their patients, but had little familiarity with the state program and a modest knowledge of the endocannabinoid system. Pain was a common symptom for which cannabis was recommended by registered physicians (69%) and purportedly used by patients (83%). Most respondents would consider MMJ as an adjuvant to opioids, and 84% believed opioids have greater risks than MMJ. Conclusion: Given that the majority of surveyed physicians support MMJ as an option for patients, few are registered and have adequate knowledge of MMJ. Although our study sample is small and geographically limited, our survey results highlight key physician issues that are likely applicable to practitioners in other states. Concerted efforts are needed at the federal, state, and academic levels to provide practitioners with evidence-based guidelines for the safe use of MMJ.
PMCID:5899285
PMID: 29662957
ISSN: 2378-8763
CID: 3042722

AMPAkines Target the Nucleus Accumbens to Relieve Postoperative Pain

Su, Chen; Lin, Hau Yeuh; Yang, Runtao; Xu, Duo; Lee, Michelle; Pawlak, Natalie; Norcini, Monica; Sideris, Alexandra; Recio-Pinto, Esperanza; Huang, Dong; Wang, Jing
BACKGROUND: AMPAkines augment the function of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the brain to increase excitatory outputs. These drugs are known to relieve persistent pain. However, their role in acute pain is unknown. Furthermore, a specific molecular and anatomic target for these novel analgesics remains elusive. METHODS: The authors studied the analgesic role of an AMPAkine, CX546, in a rat paw incision (PI) model of acute postoperative pain. The authors measured the effect of AMPAkines on sensory and depressive symptoms of pain using mechanical hypersensitivity and forced swim tests. The authors asked whether AMPA receptors in the nucleus accumbens (NAc), a key node in the brain's reward and pain circuitry, can be a target for AMPAkine analgesia. RESULTS: Systemic administration of CX546 (n = 13), compared with control (n = 13), reduced mechanical hypersensitivity (50% withdrawal threshold of 6.05 +/- 1.30 g [mean +/- SEM] vs. 0.62 +/- 0.13 g), and it reduced depressive features of pain by decreasing immobility on the forced swim test in PI-treated rats (89.0 +/- 15.5 vs. 156.7 +/- 18.5 s). Meanwhile, CX546 delivered locally into the NAc provided pain-relieving effects in both PI (50% withdrawal threshold of 6.81 +/- 1.91 vs. 0.50 +/- 0.03 g; control, n = 6; CX546, n = 8) and persistent postoperative pain (spared nerve injury) models (50% withdrawal threshold of 3.85 +/- 1.23 vs. 0.45 +/- 0.00 g; control, n = 7; CX546, n = 11). Blocking AMPA receptors in the NAc with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione inhibited these pain-relieving effects (50% withdrawal threshold of 7.18 +/- 1.52 vs. 1.59 +/- 0.66 g; n = 8 for PI groups; 10.70 +/- 3.45 vs. 1.39 +/- 0.88 g; n = 4 for spared nerve injury groups). CONCLUSIONS: AMPAkines relieve postoperative pain by acting through AMPA receptors in the NAc.
PMCID:5226421
PMID: 27627816
ISSN: 1528-1175
CID: 2247002

Cannabinoid 1 receptor knockout mice display cold allodynia, but enhanced recovery from spared-nerve injury-induced mechanical hypersensitivity

Sideris, Alexandra; Piskoun, Boris; Russo, Lori; Norcini, Monica; Blanck, Thomas; Recio-Pinto, Esperanza
BACKGROUND: The function of the Cannabinoid 1 receptor (CB1R) in the development of neuropathic pain is not clear. Mounting evidence suggest that CB1R expression and activation may contribute to pain. Cannabinoid 1 receptor knockout mice (CB1R-/-) generated on a C57Bl/6 background exhibit hypoalgesia in the hotplate assay and formalin test. These findings suggest that Cannabinoid 1 receptor expression mediates the responses to at least some types of painful stimuli. By using this mouse line, we sought to determine if the lack of Cannabinoid 1 receptor unveils a general hypoalgesic phenotype, including protection against the development of neuropathic pain. The acetone test was used to measure cold sensitivity, the electronic von Frey was used to measure mechanical thresholds before and after spared-nerve injury, and analysis of footprint patterns was conducted to determine if motor function is differentially affected after nerve-injury in mice with varying levels of Cannabinoid 1 receptor. RESULTS: At baseline, CB1R-/- mice were hypersensitive in the acetone test, and this phenotype was maintained after spared-nerve injury. Using calcium imaging of lumbar dorsal root ganglion (DRG) cultures, a higher percentage of neurons isolated from CB1R-/- mice were menthol sensitive relative to DRG isolated from wild-type (CB1R+/+) mice. Baseline mechanical thresholds did not differ among genotypes, and mechanical hypersensitivity developed similarly in the first two weeks following spared-nerve injury (SNI). At two weeks post-SNI, CB1R-/- mice recovered significantly from mechanical hypersensitivity, while the CB1R+/+ mice did not. Heterozygous knockouts (CB1R+/-) transiently developed cold allodynia only after injury, but recovered mechanical thresholds to a similar extent as the CB1R-/- mice. Sciatic functional indices, which reflect overall nerve health, and alternation coefficients, which indicate uniformity of strides, were not significantly different among genotypes. CONCLUSION: Cold allodynia and significant recovery from spared-nerve injury-induced mechanical hypersensitivity are two novel phenotypes which characterize the global CB1R-/- mice. An increase in transient receptor potential channel of melastatin 8 channel function in DRG neurons may underlie the cold phenotype. Recovery of mechanical thresholds in the CB1R knockouts was independent of motor function. These results indicate that CB1R expression contributes to the development of persistent mechanical hypersensitivity, protects against the development of robust cold allodynia but is not involved in motor impairment following spared-nerve injury in mice.
PMCID:4956369
PMID: 27206660
ISSN: 1744-8069
CID: 2112502

NR2B Expression in Rat DRG Is Differentially Regulated Following Peripheral Nerve Injuries That Lead to Transient or Sustained Stimuli-Evoked Hypersensitivity

Norcini, Monica; Sideris, Alexandra; Adler, Samantha M; Hernandez, Lourdes A M; Zhang, Jin; Blanck, Thomas J J; Recio-Pinto, Esperanza
Following injury, primary sensory neurons undergo changes that drive central sensitization and contribute to the maintenance of persistent hypersensitivity. NR2B expression in the dorsal root ganglia (DRG) has not been previously examined in neuropathic pain models. Here, we investigated if changes in NR2B expression within the DRG are associated with hypersensitivities that result from peripheral nerve injuries. This was done by comparing the NR2B expression in the DRG derived from two modalities of the spared nerve injury (SNI) model, since each variant produces different neuropathic pain phenotypes. Using the electronic von Frey to stimulate the spared and non-spared regions of the hindpaws, we demonstrated that sural-SNI animals develop sustained neuropathic pain in both regions while the tibial-SNI animals recover. NR2B expression was measured at Day 23 and Day 86 post-injury. At Day 23 and 86 post-injury, sural-SNI animals display strong hypersensitivity, whereas tibial-SNI animals display 50 and 100% recovery from post-injury-induced hypersensitivity, respectively. In tibial-SNI at Day 86, but not at Day 23 the perinuclear region of the neuronal somata displayed an increase in NR2B protein. This retention of NR2B protein within the perinuclear region, which will render them non-functional, correlates with the recovery observed in tibial-SNI. In sural-SNI at Day 86, DRG displayed an increase in NR2B mRNA which correlates with the development of sustained hypersensitivity in this model. The increase in NR2B mRNA was not associated with an increase in NR2B protein within the neuronal somata. The latter may result from a decrease in kinesin Kif17, since Kif17 mediates NR2B transport to the soma's plasma membrane. In both SNIs, microglia/macrophages showed a transient increase in NR2B protein detected at Day 23 but not at Day 86, which correlates with the initial post-injury induced hypersensitivity in both SNIs. In tibial-SNI at Day 86, but not at Day 23, satellite glia cells (SGCs) displayed an increase in NR2B protein. This study is the first to characterize of cell-specific changes in NR2B expression within the DRG following peripheral nerve injury. We discuss how the observed NR2B changes in DRG can contribute to the different neuropathic pain phenotypes displayed by each SNI variant.
PMCID:5068091
PMID: 27803647
ISSN: 1662-5099
CID: 2296522