Try a new search

Format these results:

Searched for:

person:at570

in-biosketch:yes

Total Results:

183


Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer

Pillai, Ray; LeBoeuf, Sarah E; Hao, Yuan; New, Connie; Blum, Jenna L E; Rashidfarrokhi, Ali; Huang, Shih Ming; Bahamon, Christian; Wu, Warren L; Karadal-Ferrena, Burcu; Herrera, Alberto; Ivanova, Ellie; Cross, Michael; Bossowski, Jozef P; Ding, Hongyu; Hayashi, Makiko; Rajalingam, Sahith; Karakousi, Triantafyllia; Sayin, Volkan I; Khanna, Kamal M; Wong, Kwok-Kin; Wild, Robert; Tsirigos, Aristotelis; Poirier, John T; Rudin, Charles M; Davidson, Shawn M; Koralov, Sergei B; Papagiannakopoulos, Thales
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.
PMID: 38536921
ISSN: 2375-2548
CID: 5644942

Self-Supervised Learning Reveals Clinically Relevant Histomorphological Patterns for Therapeutic Strategies in Colon Cancer

Liu, Bojing; Polack, Meaghan; Coudray, Nicolas; Quiros, Adalberto Claudio; Sakellaropoulos, Theodoros; Crobach, Augustinus S L P; van Krieken, J Han J M; Yuan, Ke; Tollenaar, Rob A E M; Mesker, Wilma E; Tsirigos, Aristotelis
Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-and-eosin-stained whole-slide images (WSIs). We trained an SSL Barlow Twins-encoder on 435 TCGA colon adenocarcinoma WSIs to extract features from small image patches. Leiden community detection then grouped tiles into histomorphological phenotype clusters (HPCs). HPC reproducibility and predictive ability for overall survival was confirmed in an independent clinical trial cohort (N=1213 WSIs). This unbiased atlas resulted in 47 HPCs displaying unique and sharing clinically significant histomorphological traits, highlighting tissue type, quantity, and architecture, especially in the context of tumor stroma. Through in-depth analysis of these HPCs, including immune landscape and gene set enrichment analysis, and association to clinical outcomes, we shed light on the factors influencing survival and responses to treatments like standard adjuvant chemotherapy and experimental therapies. Further exploration of HPCs may unveil new insights and aid decision-making and personalized treatments for colon cancer patients.
PMCID:10942268
PMID: 38496571
CID: 5640072

SETD2 mutations do not contribute to clonal fitness in response to chemotherapy in childhood B cell acute lymphoblastic leukemia

Contreras Yametti, Gloria P; Robbins, Gabriel; Chowdhury, Ashfiyah; Narang, Sonali; Ostrow, Talia H; Kilberg, Harrison; Greenberg, Joshua; Kramer, Lindsay; Raetz, Elizabeth; Tsirigos, Aristotelis; Evensen, Nikki A; Carroll, William L
Mutations in genes encoding epigenetic regulators are commonly observed at relapse in B cell acute lymphoblastic leukemia (B-ALL). Loss-of-function mutations in SETD2, an H3K36 methyltransferase, have been observed in B-ALL and other cancers. Previous studies on mutated SETD2 in solid tumors and acute myelogenous leukemia support a role in promoting resistance to DNA damaging agents. We did not observe chemoresistance, an impaired DNA damage response, nor increased mutation frequency in response to thiopurines using CRISPR-mediated knockout in wild-type B-ALL cell lines. Likewise, restoration of SETD2 in cell lines with hemizygous mutations did not increase sensitivity. SETD2 mutations affected the chromatin landscape and transcriptional output that was unique to each cell line. Collectively our data does not support a role for SETD2 mutations in driving clonal evolution and relapse in B-ALL, which is consistent with the lack of enrichment of SETD2 mutations at relapse in most studies.
PMID: 37874744
ISSN: 1029-2403
CID: 5635112

3D Enhancer-promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages

Murphy, Dylan; Salataj, Eralda; Di Giammartino, Dafne Campigli; Rodriguez-Hernaez, Javier; Kloetgen, Andreas; Garg, Vidur; Char, Erin; Uyehara, Christopher M; Ee, Ly-Sha; Lee, UkJin; Stadtfeld, Matthias; Hadjantonakis, Anna-Katerina; Tsirigos, Aristotelis; Polyzos, Alexander; Apostolou, Effie
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.
PMID: 38053013
ISSN: 1545-9985
CID: 5595532

KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance

Zavitsanou, Anastasia-Maria; Pillai, Ray; Hao, Yuan; Wu, Warren L; Bartnicki, Eric; Karakousi, Triantafyllia; Rajalingam, Sahith; Herrera, Alberto; Karatza, Angeliki; Rashidfarrokhi, Ali; Solis, Sabrina; Ciampricotti, Metamia; Yeaton, Anna H; Ivanova, Ellie; Wohlhieter, Corrin A; Buus, Terkild B; Hayashi, Makiko; Karadal-Ferrena, Burcu; Pass, Harvey I; Poirier, John T; Rudin, Charles M; Wong, Kwok-Kin; Moreira, Andre L; Khanna, Kamal M; Tsirigos, Aristotelis; Papagiannakopoulos, Thales; Koralov, Sergei B
Lung cancer treatment has benefited greatly through advancements in immunotherapies. However, immunotherapy often fails in patients with specific mutations like KEAP1, which are frequently found in lung adenocarcinoma. We established an antigenic lung cancer model and used it to explore how Keap1 mutations remodel the tumor immune microenvironment. Using single-cell technology and depletion studies, we demonstrate that Keap1-mutant tumors diminish dendritic cell and T cell responses driving immunotherapy resistance. This observation was corroborated in patient samples. CRISPR-Cas9-mediated gene targeting revealed that hyperactivation of the NRF2 antioxidant pathway is responsible for diminished immune responses in Keap1-mutant tumors. Importantly, we demonstrate that combining glutaminase inhibition with immune checkpoint blockade can reverse immunosuppression, making Keap1-mutant tumors susceptible to immunotherapy. Our study provides new insight into the role of KEAP1 mutations in immune evasion, paving the way for novel immune-based therapeutic strategies for KEAP1-mutant cancers.
PMID: 37889752
ISSN: 2211-1247
CID: 5590262

An Anterior Second Heart Field Enhancer Regulates the Gene Regulatory Network of the Cardiac Outflow Tract

Yamaguchi, Naoko; Chang, Ernest W; Lin, Ziyan; Shekhar, Akshay; Bu, Lei; Khodadadi-Jamayran, Alireza; Tsirigos, Aristotelis; Cen, Yiyun; Phoon, Colin K L; Moskowitz, Ivan P; Park, David S
BACKGROUND/UNASSIGNED:Conotruncal defects due to developmental abnormalities of the outflow tract (OFT) are an important cause of cyanotic congenital heart disease. Dysregulation of transcriptional programs tuned by NKX2-5 (NK2 homeobox 5), GATA6 (GATA binding protein 6), and TBX1 (T-box transcription factor 1) have been implicated in abnormal OFT morphogenesis. However, there remains no consensus on how these transcriptional programs function in a unified gene regulatory network within the OFT. METHODS/UNASSIGNED: RESULTS/UNASSIGNED: CONCLUSIONS/UNASSIGNED:Our results using human and mouse models reveal an essential gene regulatory network of the OFT that requires an anterior second heart field enhancer to link GATA6 with NKX2-5-dependent rotation and septation gene programs.
PMID: 37772400
ISSN: 1524-4539
CID: 5606412

Inflammation in the tumor-adjacent lung as a predictor of clinical outcome in lung adenocarcinoma

Dolgalev, Igor; Zhou, Hua; Murrell, Nina; Le, Hortense; Sakellaropoulos, Theodore; Coudray, Nicolas; Zhu, Kelsey; Vasudevaraja, Varshini; Yeaton, Anna; Goparaju, Chandra; Li, Yonghua; Sulaiman, Imran; Tsay, Jun-Chieh J; Meyn, Peter; Mohamed, Hussein; Sydney, Iris; Shiomi, Tomoe; Ramaswami, Sitharam; Narula, Navneet; Kulicke, Ruth; Davis, Fred P; Stransky, Nicolas; Smolen, Gromoslaw A; Cheng, Wei-Yi; Cai, James; Punekar, Salman; Velcheti, Vamsidhar; Sterman, Daniel H; Poirier, J T; Neel, Ben; Wong, Kwok-Kin; Chiriboga, Luis; Heguy, Adriana; Papagiannakopoulos, Thales; Nadorp, Bettina; Snuderl, Matija; Segal, Leopoldo N; Moreira, Andre L; Pass, Harvey I; Tsirigos, Aristotelis
Approximately 30% of early-stage lung adenocarcinoma patients present with disease progression after successful surgical resection. Despite efforts of mapping the genetic landscape, there has been limited success in discovering predictive biomarkers of disease outcomes. Here we performed a systematic multi-omic assessment of 143 tumors and matched tumor-adjacent, histologically-normal lung tissue with long-term patient follow-up. Through histologic, mutational, and transcriptomic profiling of tumor and adjacent-normal tissue, we identified an inflammatory gene signature in tumor-adjacent tissue as the strongest clinical predictor of disease progression. Single-cell transcriptomic analysis demonstrated the progression-associated inflammatory signature was expressed in both immune and non-immune cells, and cell type-specific profiling in monocytes further improved outcome predictions. Additional analyses of tumor-adjacent transcriptomic data from The Cancer Genome Atlas validated the association of the inflammatory signature with worse outcomes across cancers. Collectively, our study suggests that molecular profiling of tumor-adjacent tissue can identify patients at high risk for disease progression.
PMCID:10632519
PMID: 37938580
ISSN: 2041-1723
CID: 5609852

Digital spatial profiling to predict recurrence in grade 3 stage I lung adenocarcinoma

Chang, Stephanie H; Mezzano-Robinson, Valeria; Zhou, Hua; Moreira, Andre; Pillai, Raymond; Ramaswami, Sitharam; Loomis, Cynthia; Heguy, Adriana; Tsirigos, Aristotelis; Pass, Harvey I
OBJECTIVE:Early-stage lung adenocarcinoma is treated with local therapy alone, although patients with grade 3 stage I lung adenocarcinoma have a 50% 5-year recurrence rate. Our objective is to determine if analysis of the tumor microenvironment can create a predictive model for recurrence. METHODS:Thirty-four patients with grade 3 stage I lung adenocarcinoma underwent surgical resection. Digital spatial profiling was used to perform genomic (n = 31) and proteomic (n = 34) analyses of pancytokeratin positive and negative tumor cells. K-means clustering was performed on the top 50 differential genes and top 20 differential proteins, with Kaplan-Meier recurrence curves based on patient clustering. External validation of high-expression genes was performed with Kaplan-Meier plotter. RESULTS:There were no significant clinicopathologic differences between patients who did (n = 14) and did not (n = 20) have recurrence. Median time to recurrence was 806 days; median follow-up with no recurrence was 2897 days. K-means clustering of pancytokeratin positive genes resulted in a model with a Kaplan-Meier curve with concordance index of 0.75. K-means clustering for pancytokeratin negative genes was less successful at differentiating recurrence (concordance index 0.6). Genes upregulated or downregulated for recurrence were externally validated using available public databases. Proteomic data did not reach statistical significance but did internally validate the genomic data described. CONCLUSIONS:Genomic difference in lung adenocarcinoma may be able to predict risk of recurrence. After further validation, stratifying patients by this risk may help guide who will benefit from adjuvant therapy.
PMID: 37890657
ISSN: 1097-685x
CID: 5620342

Multiomic mapping of acquired chromosome 1 copy number and structural variants to identify therapeutic vulnerabilities in multiple myeloma

Boyle, Eileen M; Blaney, Patrick; Stoeckle, James H; Wang, Yubao; Ghamlouch, Hussein; Gagler, Dylan; Braunstein, Marc; Williams, Louis; Tenenbaum, Avital; Siegel, Ariel; Chen, Xiaoyi; Varma, Gaurav; Avigan, Jason; Li, Alexander; Jinsi, Monica; Kaminetzky, David; Arbini, Arnaldo; Montes, Lydia; Corre, Jill; Rustad, Even H; Landgren, Ola; Maura, Francesco; Walker, Brian A; Bauer, Michael; Bruno, Benedetto; Tsirigos, Aristotelis; Davies, Faith E; Morgan, Gareth J
PURPOSE/OBJECTIVE:Chromosome 1 (chr1) copy number abnormalities (CNAs) and structural variants (SV) are frequent in newly diagnosed multiple myeloma (NDMM) and associate with a heterogeneous impact on outcome the drivers of which are largely unknown. EXPERIMENTAL DESIGN/METHODS:A multiomic approach comprising CRISPR, gene mapping of CNA and SV, methylation, expression, and mutational analysis was used to document the extent of chr1 molecular variants and their impact on pathway utilisation. RESULTS:We identified two distinct groups of gain(1q): focal gains associated with limited gene expression changes and a neutral prognosis, and whole-arm gains, which associate with substantial gene expression changes, complex genetics and an adverse prognosis. CRISPR identified a number of dependencies on chr1 but only limited variants associated with acquired CNAs. We identified seven regions of deletion, nine of gain, three of chromothripsis (CT) and two of templated-insertion (TI), which contain a number of potential drivers. An additional mechanism involving hypomethylation of genes at 1q may contribute to the aberrant gene expression of a number of genes. Expression changes associated with whole-arm gains were substantial and gene set enrichment analysis identified metabolic processes, apoptotic resistance, signaling via the MAPK pathway, and upregulation of transcription factors as being key drivers of the adverse prognosis associated with these variants. CONCLUSIONS:Multiple layers of genetic complexity impact the phenotype associated with CNAs on chr1 to generate its associated clinical phenotype. Whole-arm gains of 1q are the critically important prognostic group that deregulate multiple pathways, which may offer therapeutic vulnerabilities.
PMID: 37449980
ISSN: 1557-3265
CID: 5537862

Loss of Notch signaling in skeletal stem cells enhances bone formation with aging

Remark, Lindsey H; Leclerc, Kevin; Ramsukh, Malissa; Lin, Ziyan; Lee, Sooyeon; Dharmalingam, Backialakshmi; Gillinov, Lauren; Nayak, Vasudev V; El Parente, Paulo; Sambon, Margaux; Atria, Pablo J; Ali, Mohamed A E; Witek, Lukasz; Castillo, Alesha B; Park, Christopher Y; Adams, Ralf H; Tsirigos, Aristotelis; Morgani, Sophie M; Leucht, Philipp
Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.
PMCID:10522593
PMID: 37752132
ISSN: 2095-4700
CID: 5608842