Try a new search

Format these results:

Searched for:

person:avsham01

in-biosketch:yes

Total Results:

28


A broad and variable lumbosacral myotome map uncovered by foraminal nerve root stimulation

London, Dennis; Birkenfeld, Ben; Thomas, Joel; Avshalumov, Marat; Mogilner, Alon Y; Falowski, Steven; Mammis, Antonios
OBJECTIVE:The human myotome is fundamental to the diagnosis and treatment of neurological disorders. However, this map was largely constructed decades ago, and its breadth, variability, and reliability remain poorly described, limiting its practical use. METHODS:The authors used a novel method to reconstruct the myotome map in patients (n = 42) undergoing placement of dorsal root ganglion electrodes for the treatment of chronic pain. They electrically stimulated nerve roots (n = 79) in the intervertebral foramina at T12-S1 and measured triggered electromyography responses. RESULTS:L4 and L5 stimulation resulted in quadriceps muscle (62% and 33% of stimulations, respectively) and tibialis anterior (TA) muscle (25% and 67%, respectively) activation, while S1 stimulation resulted in gastrocnemius muscle activation (46%). However, L5 and S1 both resulted in abductor hallucis (AH) muscle activation (17% and 31%), L5 stimulation resulted in gastrocnemius muscle stimulation (42%), and S1 stimulation in TA muscle activation (38%). The authors also mapped the breadth of the myotome in individual patients, finding coactivation of adductor and quadriceps, quadriceps and TA, and TA and gastrocnemius muscles under L3, L4, and both L5 and S1 stimulation, respectively. While the AH muscle was commonly activated by S1 stimulation, this rarely occurred together with TA or gastrocnemius muscle activation. Other less common coactivations were also observed throughout T12-S1 stimulation. CONCLUSIONS:The muscular innervation of the lumbosacral nerve roots varies significantly from the classic myotome map and between patients. Furthermore, in individual patients, each nerve root may innervate a broader range of muscles than is commonly assumed. This finding is important to prevent misdiagnosis of radicular pathologies.
PMID: 35561698
ISSN: 1547-5646
CID: 5215012

Pallidal deep brain stimulation for DYT6 dystonia [Case Report]

Panov, Fedor; Tagliati, Michele; Ozelius, Laurie J; Fuchs, Tania; Gologorsky, Yakov; Cheung, Tyler; Avshalumov, Marat; Bressman, Susan B; Saunders-Pullman, Rachel; Weisz, Donald; Alterman, Ron L
BACKGROUND: Mutations of the THAP1 gene were recently shown to underlie DYT6 torsion dystonia. Little is known about the response of this dystonia subtype to deep brain stimulation (DBS) at the internal globus pallidus (GPi). METHODS: Retrospective analysis of the medical records of three DYT6 patients who underwent pallidal DBS by one surgical team. The Burke-Fahn-Marsden Dystonia Rating scale served as the primary outcome measure. Comparison is made to 23 patients with DYT1 dystonia also treated with GPi-DBS by the same team. RESULTS: In contrast with the DYT1 patients who exhibited a robust and sustained clinical response to DBS, the DYT6 patients exhibited more modest gains during the first 2 years of therapy, and some symptom regression between years 2 and 3 despite adjustments to the stimulation parameters and repositioning of one stimulating lead. Microelectrode recordings made during the DBS procedures demonstrated no differences in the firing patterns of GPi neurons from DYT1 and DYT6 patients. DISCUSSION: Discovery of the genetic mutations responsible for the DYT6 phenotype allows for screening and analysis of a new homogeneous group of dystonia patients. DYT6 patients appear to respond less robustly to GPi-DBS than their DYT1 counterparts, most likely reflecting differences in the underlying pathophysiology of these distinct genetic disorders. CONCLUSIONS: While early results of pallidal DBS for DYT6 dystonia are encouraging, further research and additional subjects are needed both to optimise stimulation parameters for this population and to elucidate more accurately their response to surgical treatment.
PMID: 21949105
ISSN: 0022-3050
CID: 907522

A food restriction protocol that increases drug reward decreases tropomyosin receptor kinase B in the ventral tegmental area, with no effect on brain-derived neurotrophic factor or tropomyosin receptor kinase B protein levels in dopaminergic forebrain regions

Pan, Y; Chau, L; Liu, S; Avshalumov, M V; Rice, M E; Carr, K D
Food restriction (FR) decreases brain-derived neurotrophic factor (BDNF) expression in hypothalamic and hindbrain regions that regulate feeding and metabolic efficiency, while increasing expression in hippocampal and neocortical regions. Drugs of abuse alter BDNF expression within the mesocorticolimbic dopamine (DA) pathway, and modifications of BDNF expression within this pathway alter drug-directed behavior. Although FR produces a variety of striatal neuroadaptations and potentiates the rewarding effects of abused drugs, the effects of FR on BDNF expression and function within the DA pathway are unknown. The primary purpose of the present study was to examine the effect of FR on protein levels of BDNF and its tropomyosin receptor kinase B (TrkB) receptor in component structures of the mesocorticolimbic pathway. Three to four weeks of FR, with stabilization of rats at 80% of initial body weight, did not alter BDNF or TrkB levels in nucleus accumbens, caudate-putamen, or medial prefrontal cortex. However, FR decreased TrkB levels in the ventral tegmental area (VTA), without change in levels of BDNF protein or mRNA. The finding that FR also decreased TrkB levels in substantia nigra, with elevation of BDNF protein, suggests that decreased TrkB in VTA could be a residual effect of increased BDNF during an earlier phase of FR. Voltage-clamp recordings in VTA DA neurons indicated decreased glutamate receptor transmission. These data might predict lower average firing rates in FR relative to ad libitum fed subjects, which would be consistent with previous evidence of decreased striatal DA transmission and upregulation of postsynaptic DA receptor signaling. However, FR subjects also displayed elevated VTA levels of phospho-ERK1/2, which is an established mediator of synaptic plasticity. Because VTA neurons are heterogeneous with regard to neurochemistry, function, and target projections, the relationship(s) between the three changes observed in VTA, and their involvement in the augmented striatal and behavioral responsiveness of FR subjects to drugs of abuse, remains speculative
PMCID:3210415
PMID: 21945647
ISSN: 1873-7544
CID: 141070

Enhanced Striatal Dopamine Transmission and Motor Performance with LRRK2 Overexpression in Mice Is Eliminated by Familial Parkinson's Disease Mutation G2019S

Li, Xianting; Patel, Jyoti C; Wang, Jing; Avshalumov, Marat V; Nicholson, Charles; Buxbaum, Joseph D; Elder, Gregory A; Rice, Margaret E; Yue, Zhenyu
PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events
PMCID:2858426
PMID: 20130188
ISSN: 0270-6474
CID: 106517

Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling

Bao, Li; Avshalumov, Marat V; Patel, Jyoti C; Lee, Christian R; Miller, Evan W; Chang, Christopher J; Rice, Margaret E
Hydrogen peroxide (H(2)O(2)) is emerging as a ubiquitous small-molecule messenger in biology, particularly in the brain, but underlying mechanisms of peroxide signaling remain an open frontier for study. For example, dynamic dopamine transmission in dorsolateral striatum is regulated on a subsecond timescale by glutamate via H(2)O(2) signaling, which activates ATP-sensitive potassium (K(ATP)) channels to inhibit dopamine release. However, the origin of this modulatory H(2)O(2) has been elusive. Here we addressed three possible sources of H(2)O(2) produced for rapid neuronal signaling in striatum: mitochondrial respiration, monoamine oxidase (MAO), and NADPH oxidase (Nox). Evoked dopamine release in guinea-pig striatal slices was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Using direct fluorescence imaging of H(2)O(2) and tissue analysis of ATP, we found that coapplication of rotenone (50 nM), a mitochondrial complex I inhibitor, and succinate (5 mM), a complex II substrate, limited H(2)O(2) production, but maintained tissue ATP content. Strikingly, coapplication of rotenone and succinate also prevented glutamate-dependent regulation of dopamine release, implicating mitochondrial H(2)O(2) in release modulation. In contrast, inhibitors of MAO or Nox had no effect on dopamine release, suggesting a limited role for these metabolic enzymes in rapid H(2)O(2) production in the striatum. These data provide the first demonstration that respiring mitochondria are the primary source of H(2)O(2) generation for dynamic neuronal signaling
PMCID:2892101
PMID: 19605638
ISSN: 1529-2401
CID: 100678

Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release

Patel, Jyoti C; Witkovsky, Paul; Avshalumov, Marat V; Rice, Margaret E
Somatodendritic dopamine (DA) release in the substantia nigra pars compacta (SNc) shows a limited dependence on extracellular calcium concentration ([Ca(2+)](o)), suggesting the involvement of intracellular Ca(2+) stores. Here, using immunocytochemistry we demonstrate the presence of the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) that sequesters cytosolic Ca(2+) into the endoplasmic reticulum (ER), as well as inositol 1,4,5-triphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs) in DAergic neurons. Notably, RyRs were clustered at the plasma membrane, poised for activation by Ca(2+) entry. Using fast-scan cyclic voltammetry to monitor evoked extracellular DA concentration ([DA](o)) in midbrain slices, we found that SERCA inhibition by cyclopiazonic acid (CPA) decreased evoked [DA](o) in the SNc, indicating a functional role for ER Ca(2+) stores in somatodendritic DA release. Implicating IP(3)R-dependent stores, an IP(3)R antagonist, 2-APB, also decreased evoked [DA](o). Moreover, DHPG, an agonist of group I metabotropic glutamate receptors (mGluR1s, which couple to IP(3) production), increased somatodendritic DA release, whereas CPCCOEt, an mGluR1 antagonist, suppressed it. Release suppression by mGluR1 blockade was prevented by 2-APB or CPA, indicating facilitation of DA release by endogenous glutamate acting via mGluR1s and IP(3)R-gated Ca(2+) stores. Similarly, activation of RyRs by caffeine increased [Ca(2+)](i) and elevated evoked [DA](o). The increase in DA release was prevented by a RyR blocker, dantrolene, and by CPA. Importantly, the efficacy of dantrolene was enhanced in low [Ca(2+)](o), suggesting a mechanism for maintenance of somatodendritic DA release with limited Ca(2+) entry. Thus, both mGluR1-linked IP(3)R- and RyR-dependent ER Ca(2+) stores facilitate somatodendritic DA release in the SNc
PMCID:2892889
PMID: 19458227
ISSN: 1529-2401
CID: 99027

AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release

Avshalumov, Marat V; Patel, Jyoti C; Rice, Margaret E
Dopamine-glutamate interactions in the striatum are critical for normal basal ganglia-mediated control of movement. Although regulation of glutamatergic transmission by dopamine is increasingly well understood, regulation of dopaminergic transmission by glutamate remains uncertain given the apparent absence of ionotropic glutamate receptors on dopaminergic axons in dorsal striatum. Indirect evidence suggests glutamatergic regulation of striatal dopamine release is mediated by a diffusible messenger, hydrogen peroxide (H2O2), generated downstream from glutamatergic AMPA receptors (AMPARs). The mechanism of H2O2-dependent inhibition of dopamine release involves activation of ATP-sensitive K+ (KATP) channels. However, the source of modulatory H2O2 is unknown. Here, we used whole cell recording, fluorescence imaging of H2O2, and voltammetric detection of evoked dopamine release in guinea pig striatal slices to examine contributions from medium spiny neurons (MSNs), the principal neurons of striatum, and dopamine axons to AMPAR-dependent H2O2 generation. Imaging studies of H2O2 generation in MSNs provide the first demonstration of AMPAR-dependent H2O2 generation in neurons in the complex brain-cell microenvironment of brain slices. Stimulation-induced increases in H2O2 in MSNs were prevented by GYKI-52466, an AMPAR antagonist, or catalase, an H2O2 metabolizing enzyme, but amplified by mercaptosuccinate (MCS), a glutathione peroxidase inhibitor. By contrast, dopamine release evoked by selective stimulation of dopamine axons was unaffected by GYKI-52466 or MCS, arguing against dopamine axons as a significant source of modulatory H2O2. Together, these findings suggest that glutamatergic regulation of dopamine release via AMPARs is mediated through retrograde signaling by diffusible H2O2 generated in striatal cells, including medium spiny neurons, rather than in dopamine axons
PMCID:2544473
PMID: 18632893
ISSN: 0022-3077
CID: 93338

Diffusible hydrogen peroxide generated by synaptic activity inhibits axonal dopamine release in striatum

Chapter by: Avshalumov, Marat V; Patel, Jyoti C; Bao, Li; MacGregor, Duncan G; Sidlo, Zsuzsanna; Rice, Margaret E
in: Beyond the synapse: Cell-cell signaling in synaptic plasticity by Fields, R. Douglas. [Eds]
New York, NY, US: Cambridge University Press, 2008
pp. 181-192
ISBN: 978-0-521-86914-0
CID: 5015

H2O2 signaling in the nigrostriatal dopamine pathway via ATP-sensitive potassium channels: issues and answers

Avshalumov, Marat V; Bao, Li; Patel, Jyoti C; Rice, Margaret E
The role of reactive oxygen species (ROS) as signaling agents is increasingly appreciated. Studies of ROS functions in the central nervous system, however, are only in their infancy. Using fast-scan cyclic voltammetry and fluorescence imaging in brain slices, the authors discovered that hydrogen peroxide (H2O2) is an endogenous regulator of dopamine release in the dorsal striatum. Given the key role of dopamine in motor, reward, and cognitive pathways, regulation by H2O2 has implications for normal dopamine function, as well as for dysfunction of dopamine transmission. In this review, data are summarized to show that H2O2 is a diffusible messenger in the striatum, generated downstream from glutamate receptor activation, and an intracellular signal in dopamine neurons of the substantia nigra, generated during normal pacemaker activity. The mechanism by which H2O2 inhibits dopamine release and dopamine cell activity is activation of ATP-sensitive K+ (KATP) channels. Characteristics of the neuronal and glial antioxidant networks required to permit H2O2 signaling, yet prevent oxidative damage, are also considered. Lastly, estimates of physiological H2O2 levels are discussed, and strengths and limitations of currently available methods for H2O2 detection, including fluorescence imaging using dichlorofluorescein (DCF) and the next generation of fluorescent probes, are considered.
PMID: 17115944
ISSN: 1523-0864
CID: 159225

Regulation of postsynaptic Ca2+ influx in hippocampal CA1 pyramidal neurons via extracellular carbonic anhydrase

Fedirko, Nataliya; Avshalumov, Marat; Rice, Margaret E; Chesler, Mitchell
Synchronous neural activity causes rapid changes of extracellular pH (pH(e)) in the nervous system. In the CA1 region of the hippocampus, stimulation of the Schaffer collaterals elicits an alkaline pH(e) transient in stratum radiatum that is limited by extracellular carbonic anhydrase (ECA). When interstitial buffering is diminished by inhibition of ECA, the alkalosis is enhanced and NMDA receptor (NMDAR)-mediated postsynaptic currents can be augmented. Accordingly, the dendritic influx of Ca2+ elicited by synaptic excitation may be expected to increase if ECA activity were blocked. We tested this hypothesis in the CA1 stratum radiatum of hippocampal slices from juvenile rats, using extracellular, concentric pH- and Ca2+-selective microelectrodes with response times of a few milliseconds, as well as Fluo-5F imaging of intracellular Ca2+ transients. Brief stimulation of the Schaffer collaterals elicited an alkaline pH(e) transient, a transient decrease in free extracellular Ca2+ concentration ([Ca2+]e), and a corresponding transient rise in free intracellular Ca2+ concentration ([Ca2+]i). Inhibition of ECA with benzolamide caused a marked amplification and prolonged recovery of the pH(e) and [Ca2+]e responses, as well as the dendritic [Ca2+]i transients. The increase in amplitude caused by benzolamide did not occur in the presence of the NMDAR antagonist APV, but the decay of the responses was still prolonged. These results indicate that ECA can shape dendritic Ca2+ dynamics governed by NMDARs by virtue of its regulation of concomitant activity-dependent pH(e) shifts. The data also suggest that Ca2+ transients are influenced by additional mechanisms sensitive to shifts in pH(e)
PMID: 17267572
ISSN: 1529-2401
CID: 71148