Try a new search

Format these results:

Searched for:

person:bache02 or barsad01 or borowj01 or cardot01 or cowann01 or davidg04 or deustp01 or huangt03 or ichtck01 or jelinj01 or kleinh01 or kongx01 or leehus01 or mohamm01 or nudlee01 or paganm02 or reinbd01 or rothee02 or samueh01 or sergaa02 or ziffe01

Total Results:

2736


C-terminal fragment of fibroblast growth factor 23 improves heart function in murine models of high intact fibroblast growth factor 23

Hu, Ming Chang; Reneau, James A; Shi, Mingjun; Takahashi, Masaya; Chen, Gaozhi; Mohammadi, Moosa; Moe, Orson W
Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.
PMID: 38299214
ISSN: 1522-1466
CID: 5639752

Embracing cancer complexity: Hallmarks of systemic disease

Swanton, Charles; Bernard, Elsa; Abbosh, Chris; André, Fabrice; Auwerx, Johan; Balmain, Allan; Bar-Sagi, Dafna; Bernards, René; Bullman, Susan; DeGregori, James; Elliott, Catherine; Erez, Ayelet; Evan, Gerard; Febbraio, Mark A; Hidalgo, Andrés; Jamal-Hanjani, Mariam; Joyce, Johanna A; Kaiser, Matthew; Lamia, Katja; Locasale, Jason W; Loi, Sherene; Malanchi, Ilaria; Merad, Miriam; Musgrave, Kathryn; Patel, Ketan J; Quezada, Sergio; Wargo, Jennifer A; Weeraratna, Ashani; White, Eileen; Winkler, Frank; Wood, John N; Vousden, Karen H; Hanahan, Douglas
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
PMID: 38552609
ISSN: 1097-4172
CID: 5645312

Structural insights reveal interplay between LAG-3 homodimerization, ligand binding, and function

Silberstein, John L; Du, Jasper; Chan, Kun-Wei; Frank, Jessica A; Mathews, Irimpan I; Kim, Yong Bin; You, Jia; Lu, Qiao; Liu, Jia; Philips, Elliot A; Liu, Phillip; Rao, Eric; Fernandez, Daniel; Rodriguez, Grayson E; Kong, Xiang-Peng; Wang, Jun; Cochran, Jennifer R
Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed on activated T cells and an emerging immunotherapy target. Domain 1 (D1) of LAG-3, which has been purported to directly interact with major histocompatibility complex class II (MHCII) and fibrinogen-like protein 1 (FGL1), has been the major focus for the development of therapeutic antibodies that inhibit LAG-3 receptor-ligand interactions and restore T cell function. Here, we present a high-resolution structure of glycosylated mouse LAG-3 ectodomain, identifying that cis-homodimerization, mediated through a network of hydrophobic residues within domain 2 (D2), is critically required for LAG-3 function. Additionally, we found a previously unidentified key protein-glycan interaction in the dimer interface that affects the spatial orientation of the neighboring D1 domain. Mutation of LAG-3 D2 residues reduced dimer formation, dramatically abolished LAG-3 binding to both MHCII and FGL1 ligands, and consequentially inhibited the role of LAG-3 in suppressing T cell responses. Intriguingly, we showed that antibodies directed against D1, D2, and D3 domains are all capable of blocking LAG-3 dimer formation and MHCII and FGL-1 ligand binding, suggesting a potential allosteric model of LAG-3 function tightly regulated by dimerization. Furthermore, our work reveals unique epitopes, in addition to D1, that can be targeted for immunotherapy of cancer and other human diseases.
PMCID:10962948
PMID: 38483996
ISSN: 1091-6490
CID: 5639842

Persistence of backtracking by human RNA polymerase II

Yang, Kevin B; Rasouly, Aviram; Epshtein, Vitaly; Martinez, Criseyda; Nguyen, Thao; Shamovsky, Ilya; Nudler, Evgeny
RNA polymerase II (RNA Pol II) can backtrack during transcription elongation, exposing the 3' end of nascent RNA. Nascent RNA sequencing can approximate the location of backtracking events that are quickly resolved; however, the extent and genome-wide distribution of more persistent backtracking are unknown. Consequently, we developed a method to directly sequence the extruded, "backtracked" 3' RNA. Our data show that RNA Pol II slides backward more than 20 nt in human cells and can persist in this backtracked state. Persistent backtracking mainly occurs where RNA Pol II pauses near promoters and intron-exon junctions and is enriched in genes involved in translation, replication, and development, where gene expression is decreased if these events are unresolved. Histone genes are highly prone to persistent backtracking, and the resolution of such events is likely required for timely expression during cell division. These results demonstrate that persistent backtracking can potentially affect diverse gene expression programs.
PMID: 38340716
ISSN: 1097-4164
CID: 5635502

Decreasing microtubule detyrosination modulates Nav1.5 subcellular distribution and restores sodium current in mdx cardiomyocytes

Nasilli, Giovanna; de Waal, Tanja M; Marchal, Gerard A; Bertoli, Giorgia; Veldkamp, Marieke W; Rothenberg, Eli; Casini, Simona; Remme, Carol Ann
BACKGROUND:The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking. Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, is associated with an increase in MT detyrosination, decreased sodium current (INa), and arrhythmias. Parthenolide (PTL), a compound that decreases MT detyrosination, has shown beneficial effects on cardiac function in DMD, but its impact on INa has not been investigated. METHODS AND RESULTS/RESULTS:Ventricular cardiomyocytes (CMs) from wild-type (WT) and mdx (DMD) mice were incubated with either 10 µM PTL, 20 µM EpoY or DMSO for 3-5 hours, followed by patch-clamp analysis to assess INa and action potential (AP) characteristics in addition to immunofluorescence and stochastic optical reconstruction microscopy (STORM) to investigate MT detyrosination and Nav1.5 cluster size and density, respectively. In accordance with previous studies, we observed increased MT detyrosination, decreased INa and reduced AP upstroke velocity (Vmax) in mdx CMs compared to WT. PTL decreased MT detyrosination and significantly increased INa magnitude (without affecting INa gating properties) and AP Vmax in mdx CMs, but had no effect in WT CMs. Moreover, STORM analysis showed that in mdx CMs, Nav1.5 clusters were decreased not only in the grooves of the lateral membrane (LM; where dystrophin is localized), but also at the LM crests. PTL restored Nav1.5 clusters at the LM crests (but not the grooves), indicating a dystrophin-independent trafficking route to this subcellular domain. Interestingly, Nav1.5 cluster density was also reduced at the intercalated disc (ID) region of mdx CMs, which was restored to WT levels by PTL. Treatment of mdx CMs with EpoY, a specific MT detyrosination inhibitor, also increased INa density, while decreasing the amount of detyrosinated MTs, confirming a direct mechanistic link. CONCLUSIONS:Attenuating MT detyrosination in mdx CMs restored INa and enhanced Nav1.5 localization at the LM crest and ID. Hence, the reduced whole-cell INa density characteristic of mdx CMs is not only the consequence of the lack of dystrophin within the LM grooves, but is also due to reduced Nav1.5 at the LM crest and ID secondary to increased baseline MT detyrosination. Overall, our findings identify MT detyrosination as a potential therapeutic target for modulating INa and subcellular Nav1.5 distribution in pathophysiological conditions.
PMID: 38395031
ISSN: 1755-3245
CID: 5634572

Chromatin accessibility and cell cycle progression are controlled by the HDAC-associated Sin3B protein in murine hematopoietic stem cells

Calderon, Alexander; Mestvirishvili, Tamara; Boccalatte, Francesco; Ruggles, Kelly V; David, Gregory
BACKGROUND:Blood homeostasis requires the daily production of millions of terminally differentiated effector cells that all originate from hematopoietic stem cells (HSCs). HSCs are rare and exhibit unique self-renewal and multipotent properties, which depend on their ability to maintain quiescence through ill-defined processes. Defective control of cell cycle progression can eventually lead to bone marrow failure or malignancy. In particular, the molecular mechanisms tying cell cycle re-entry to cell fate commitment in HSCs remain elusive. Previous studies have identified chromatin coordination as a key regulator of differentiation in embryonic stem cells. RESULTS:phase of the cell cycle, which correlates with the engagement of specific signaling pathways, including aberrant expression of cell adhesion molecules and the interferon signaling program in LT-HSCs. In addition, we uncover the Sin3B-dependent accessibility of genomic elements controlling HSC differentiation, which points to cell cycle progression possibly dictating the priming of HSCs for differentiation. CONCLUSIONS:Our findings provide new insights into controlled cell cycle progression as a potential regulator of HSC lineage commitment through the modulation of chromatin features.
PMCID:10804615
PMID: 38254205
ISSN: 1756-8935
CID: 5624732

The Reactome Pathway Knowledgebase 2024

Milacic, Marija; Beavers, Deidre; Conley, Patrick; Gong, Chuqiao; Gillespie, Marc; Griss, Johannes; Haw, Robin; Jassal, Bijay; Matthews, Lisa; May, Bruce; Petryszak, Robert; Ragueneau, Eliot; Rothfels, Karen; Sevilla, Cristoffer; Shamovsky, Veronica; Stephan, Ralf; Tiwari, Krishna; Varusai, Thawfeek; Weiser, Joel; Wright, Adam; Wu, Guanming; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter
The Reactome Knowledgebase (https://reactome.org), an Elixir and GCBR core biological data resource, provides manually curated molecular details of a broad range of normal and disease-related biological processes. Processes are annotated as an ordered network of molecular transformations in a single consistent data model. Reactome thus functions both as a digital archive of manually curated human biological processes and as a tool for discovering functional relationships in data such as gene expression profiles or somatic mutation catalogs from tumor cells. Here we review progress towards annotation of the entire human proteome, targeted annotation of disease-causing genetic variants of proteins and of small-molecule drugs in a pathway context, and towards supporting explicit annotation of cell- and tissue-specific pathways. Finally, we briefly discuss issues involved in making Reactome more fully interoperable with other related resources such as the Gene Ontology and maintaining the resulting community resource network.
PMID: 37941124
ISSN: 1362-4962
CID: 5610282

Plant Reactome Knowledgebase: empowering plant pathway exploration and OMICS data analysis

Gupta, Parul; Elser, Justin; Hooks, Elizabeth; D'Eustachio, Peter; Jaiswal, Pankaj; Naithani, Sushma
Plant Reactome (https://plantreactome.gramene.org) is a freely accessible, comprehensive plant pathway knowledgebase. It provides curated reference pathways from rice (Oryza sativa) and gene-orthology-based pathway projections to 129 additional species, spanning single-cell photoautotrophs, non-vascular plants, and higher plants, thus encompassing a wide-ranging taxonomic diversity. Currently, Plant Reactome houses a collection of 339 reference pathways, covering metabolic and transport pathways, hormone signaling, genetic regulations of developmental processes, and intricate transcriptional networks that orchestrate a plant's response to abiotic and biotic stimuli. Beyond being a mere repository, Plant Reactome serves as a dynamic data discovery platform. Users can analyze and visualize omics data, such as gene expression, gene-gene interaction, proteome, and metabolome data, all within the rich context of plant pathways. Plant Reactome is dedicated to fostering data interoperability, upholding global data standards, and embracing the tenets of the Findable, Accessible, Interoperable and Re-usable (FAIR) data policy.
PMID: 37986220
ISSN: 1362-4962
CID: 5608382

General transcription factor from Escherichia coli with a distinct mechanism of action

Vasilyev, Nikita; Liu, Mengjie M J; Epshtein, Vitaly; Shamovsky, Ilya; Nudler, Evgeny
Gene expression in Escherichia coli is controlled by well-established mechanisms that activate or repress transcription. Here, we identify CedA as an unconventional transcription factor specifically associated with the RNA polymerase (RNAP) σ70 holoenzyme. Structural and biochemical analysis of CedA bound to RNAP reveal that it bridges distant domains of β and σ70 subunits to stabilize an open-promoter complex. CedA does so without contacting DNA. We further show that cedA is strongly induced in response to amino acid starvation, oxidative stress and aminoglycosides. CedA provides a basal level of tolerance to these clinically relevant antibiotics, as well as to rifampicin and peroxide. Finally, we show that CedA modulates transcription of hundreds of bacterial genes, which explains its pleotropic effect on cell physiology and pathogenesis.
PMCID:10803263
PMID: 38177674
ISSN: 1545-9985
CID: 5624352

Exploring DNA Repair Mechanisms in Cancer Biology: Critical Insights and Open Questions [Editorial]

Gupta, Gaorav P; Rothenberg, Eli
PMID: 38040285
ISSN: 1089-8638
CID: 5616802