Try a new search

Format these results:

Searched for:

person:bigiob02

in-biosketch:yes

Total Results:

43


Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance

Nasca, Carla; Dobbin, Josh; Bigio, Benedetta; Watson, Kathleen; de Angelis, Paolo; Kautz, Marin; Cochran, Ashly; Mathé, Aleksander A; Kocsis, James H; Lee, Francis S; Murrough, James W; McEwen, Bruce S; Rasgon, Natalie
Insulin signaling is critical for neuroplasticity, cerebral metabolism as well as for systemic energy metabolism. In rodent studies, impaired brain insulin signaling with resultant insulin resistance (IR) modulates synaptic plasticity and the corresponding behavioral functions. Despite discoveries of central actions of insulin, in vivo molecular mechanisms of brain IR until recently have proven difficult to study in the human brain. In the current study, we leveraged recent technological advances in molecular biology and herein report an increased number of exosomes enriched for L1CAM, a marker predominantly expressed in the brain, in subjects with major depressive disorder (MDD) as compared with age- and sex-matched healthy controls (HC). We also report increased concentration of the insulin receptor substrate-1 (IRS-1) in L1CAM+ exosomes in subjects with MDD as compared with age- and sex-matched HC. We found a relationship between expression of IRS-1 in L1CAM+ exosomes and systemic IR as assessed by homeostatic model assessment of IR in HC, but not in subjects with MDD. The increased IRS-1 levels in L1CAM+ exosomes were greater in subjects with MDD and were associated with suicidality and anhedonia. Finally, our data suggested sex differences in serine-312 phosphorylation of IRS-1 in L1CAM+ exosomes in subjects with MDD. These findings provide a starting point for creating mechanistic framework of brain IR in further development of personalized medicine strategies to effectively treat MDD.
PMCID:7787430
PMID: 32536688
ISSN: 1476-5578
CID: 5022942

Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: Implications for treatment resistance

Bigio, Benedetta; Mathé, Aleksander A; Sousa, Vasco C; Zelli, Danielle; Svenningsson, Per; McEwen, Bruce S; Nasca, Carla
Although regulation of energy metabolism has been linked with multiple disorders, its role in depression and responsiveness to antidepressants is less known. We found that an epigenetic and energetic agent, acetyl-l-carnitine (LAC, oral administration), rapidly rescued the depressive- and central and systemic metabolic-like phenotype of LAC-deficient Flinders Sensitive Line rats (FSL). After acute stress during LAC treatment, a subset of FSL continued to respond to LAC (rFSL), whereas the other subset did not (nrFSL). RNA sequencing of the ventral dentate gyrus, a mood-regulatory region, identified metabolic factors as key markers predisposing to depression (insulin receptors Insr, glucose transporters Glut-4 and Glut-12, and the regulator of appetite Cartpt) and to LAC responsiveness (leptin receptors Lepr, metabotropic glutamate receptors-2 mGlu2, neuropeptide-Y NPY, and mineralocorticoid receptors MR). Furthermore, we found that stress-induced treatment resistance in nrFSL shows a new gene profile, including the metabolic regulator factors elongation of long chain fatty acids 7 (Elovl7) and cytochrome B5 reductase 2 (Cyb5r2) and the synaptic regulator NPAS4. Finally, while improving central energy regulation and exerting rapid antidepressant-like effects, LAC corrected a systemic hyperinsulinemia and hyperglicemia in rFSL and failed to do that in nrFSL. These findings establish CNS energy regulation as a factor to be considered for the development of better therapeutics. Agents such as LAC that regulate metabolic factors and reduce glutamate overflow could rapidly ameliorate depression and could also be considered for treatment of insulin resistance in depressed subjects. The approach here serves as a model for identifying markers and underlying mechanisms of predisposition to diseases and treatment responsiveness that may be useful in translation to human behavior and psychopathology.
PMID: 27354525
ISSN: 1091-6490
CID: 5022842

Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility

Nasca, C; Bigio, B; Zelli, D; Nicoletti, F; McEwen, B S
Why do some individuals succumb to stress and develop debilitating psychiatric disorders, whereas others adapt well in the face of adversity? There is a gap in understanding the neural bases of individual differences in the responses to environmental factors on brain development and functions. Here, using a novel approach for screening an inbred population of laboratory animals, we identified two subpopulations of mice: susceptible mice that show mood-related abnormalities compared with resilient mice, which cope better with stress. This approach combined with molecular and behavioral analyses, led us to recognize, in hippocampus, presynaptic mGlu2 receptors, which inhibit glutamate release, as a stress-sensitive marker of individual differences to stress-induced mood disorders. Indeed, genetic mGlu2 deletion in mice results in a more severe susceptibility to stress, mimicking the susceptible mouse sub-population. Furthermore, we describe an underlying mechanism by which glucocorticoids, acting via mineralocorticoid receptors (MRs), decrease resilience to stress via downregulation of mGlu2 receptors. We also provide a mechanistic link between MRs and an epigenetic control of the glutamatergic synapse that underlies susceptibility to stressful experiences. The approach and the epigenetic allostasis concept introduced here serve as a model for identifying individual differences based upon biomarkers and underlying mechanisms and also provide molecular features that may be useful in translation to human behavior and psychopathology.
PMID: 25178162
ISSN: 1476-5578
CID: 5022992

Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes

Nasca, Carla; Barnhill, Olivia; DeAngelis, Paolo; Watson, Kathleen; Lin, Jue; Beasley, James; Young, Sarah P; Myoraku, Alison; Dobbin, Josh; Bigio, Benedetta; McEwen, Bruce; Rasgon, Natalie
Major depressive disorder (MDD) is a primary psychiatric illness worldwide; there is a dearth of new mechanistic models for the development of better therapeutic strategies. Although we continue to discover individual biological factors, a major challenge is the identification of integrated, multidimensional traits underlying the complex heterogeneity of depression and treatment outcomes. Here, we set out to ascertain the emergence of the novel mitochondrial mediator of epigenetic function acetyl-L-carnitine (LAC) in relation to previously described individual predictors of antidepressant responses to the insulin-sensitizing agent pioglitazone. Herein, we report that i) subjects with MDD and shorter leukocyte telomere length (LTL) show decreased levels of LAC, increased BMI, and a history of specific types of childhood trauma; and that ii) these multidimensional factors spanning mitochondrial metabolism, cellular aging, metabolic function, and childhood trauma provide more detailed signatures to predict longitudinal changes in depression severity in response to pioglitazone than individual factors. The findings of multidimensional signatures involved in the pathophysiology of depression and their role in predicting treatment outcomes provide a starting point for the development of a mechanistic framework linking biological networks and environmental factors to clinical outcomes in pursuit of personalized medicine strategies to effectively treat MDD.
PMCID:8592929
PMID: 34815985
ISSN: 2352-2895
CID: 5063612

Multidimensional Predictors of Susceptibility and Resilience to Social Defeat Stress

Nasca, Carla; Menard, Caroline; Hodes, Georgia; Bigio, Benedetta; Pena, Catherine; Lorsch, Zachary; Zelli, Danielle; Ferris, Anjali; Kana, Veronika; Purushothaman, Immanuel; Dobbin, Josh; Nassim, Marouane; DeAngelis, Paolo; Merad, Miriam; Rasgon, Natalie; Meaney, Michael; Nestler, Eric J; McEwen, Bruce S; Russo, Scott J
BACKGROUND:Previous studies identified several separate risk factors for stress-induced disorders. However, an integrative model of susceptibility versus resilience to stress including measures from brain-body domains is likely to yield a range of multiple phenotypic information to promote successful adaptation to stress. METHODS:We used computational and molecular approaches to test whether 1) integrative brain-body behavioral, immunological, and structural domains characterized and predicted susceptibility or resilience to social defeat stress (SDS) in mice and 2) administration of acetyl-L-carnitine promoted resilience at the SDS paradigm. RESULTS:Our findings identified multidimensional brain-body predictors of susceptibility versus resilience to SDS. The copresence of anxiety, decreased hippocampal volume, and elevated systemic interleukin-6 characterized a susceptible phenotype that developed behavioral and neurobiological deficits after exposure to SDS. The susceptible phenotype showed social withdrawal and impaired transcriptomic-wide changes in the ventral dentate gyrus after SDS. At the individual level, a computational approach predicted whether a given animal developed SDS-induced social withdrawal, or remained resilient, based on the integrative in vivo measures of anxiety and immune system function. Finally, we provide initial evidence that administration of acetyl-L-carnitine promoted behavioral resilience at the SDS paradigm. CONCLUSIONS:The current findings of multidimensional brain-body predictors of susceptibility versus resilience to stress provide a starting point for in vivo models of mechanisms predisposing apparently healthy individuals to develop the neurobiological and behavioral deficits resulting from stress exposure. This framework can lead to novel therapeutic strategies to promote resilience in susceptible phenotypes.
PMCID:6730655
PMID: 31466563
ISSN: 1873-2402
CID: 5022922

Role of the Astroglial Glutamate Exchanger xCT in Ventral Hippocampus in Resilience to Stress

Nasca, Carla; Bigio, Benedetta; Zelli, Danielle; de Angelis, Paolo; Lau, Timothy; Okamoto, Masahiro; Soya, Hideyo; Ni, Jason; Brichta, Lars; Greengard, Paul; Neve, Rachael L; Lee, Francis S; McEwen, Bruce S
We demonstrate that stress differentially regulates glutamate homeostasis in the dorsal and ventral hippocampus and identify a role for the astroglial xCT in ventral dentate gyrus (vDG) in stress and antidepressant responses. We provide an RNA-seq roadmap for the stress-sensitive vDG. The transcription factor REST binds to xCT promoter in co-occupancy with the epigenetic marker H3K27ac to regulate expression of xCT, which is also reduced in a genetic mouse model of inherent susceptibility to depressive-like behavior. Pharmacologically, modulating histone acetylation with acetyl-L-carnitine (LAC) or acetyl-N-cysteine (NAC) rapidly increases xCT and activates a network with mGlu2 receptors to prime an enhanced glutamate homeostasis that promotes both pro-resilient and antidepressant-like responses. Pharmacological xCT blockage counteracts NAC prophylactic effects. GFAP+-Cre-dependent overexpression of xCT in vDG mimics pharmacological actions in promoting resilience. This work establishes a mechanism by which vDG protection leads to stress resilience and antidepressant responses via epigenetic programming of an xCT-mGlu2 network.
PMID: 29024663
ISSN: 1097-4199
CID: 5022862

Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant

Lau, T; Bigio, B; Zelli, D; McEwen, B S; Nasca, C
The adult brain is capable of adapting to internal and external stressors by undergoing structural plasticity, and failure to be resilient and preserve normal structure and function is likely to contribute to depression and anxiety disorders. Although the hippocampus has provided the gateway for understanding stress effects on the brain, less is known about the amygdala, a key brain area involved in the neural circuitry of fear and anxiety. Here, in mice more vulnerable to stressors, we demonstrate structural plasticity within the medial and basolateral regions of the amygdala in response to prolonged 21-day chronic restraint stress (CRS). Three days before the end of CRS, treatment with the putative, rapidly acting antidepressant, acetyl-l-carnitine (LAC) in the drinking water opposed the direction of these changes. Behaviorally, the LAC treatment during the last part of CRS enhanced resilience, opposing the effects of CRS, as shown by an increased social interaction and reduced passive behavior in a forced swim test. Furthermore, CRS mice treated with LAC show resilience of the CRS-induced structural remodeling of medial amygdala (MeA) stellate neurons. Within the basolateral amygdala (BLA), LAC did not reduce, but slightly enhanced, the CRS-increased length and number of intersections of pyramidal neurons. No structural changes were observed in MeA bipolar neurons, BLA stellate neurons or in lateral amygdala stellate neurons. Our findings identify MeA stellate neurons as an important component in the responses to stress and LAC action and show that LAC can promote structural plasticity of the MeA. This may be useful as a model for increasing resilience to stressors in at-risk populations.
PMCID:5133196
PMID: 27240534
ISSN: 1476-5578
CID: 5023002

Acetyl-l-carnitine deficiency in patients with major depressive disorder

Nasca, Carla; Bigio, Benedetta; Lee, Francis S; Young, Sarah P; Kautz, Marin M; Albright, Ashly; Beasley, James; Millington, David S; Mathé, Aleksander A; Kocsis, James H; Murrough, James W; McEwen, Bruce S; Rasgon, Natalie
The lack of biomarkers to identify target populations greatly limits the promise of precision medicine for major depressive disorder (MDD), a primary cause of ill health and disability. The endogenously produced molecule acetyl-l-carnitine (LAC) is critical for hippocampal function and several behavioral domains. In rodents with depressive-like traits, LAC levels are markedly decreased and signal abnormal hippocampal glutamatergic function and dendritic plasticity. LAC supplementation induces rapid and lasting antidepressant-like effects via epigenetic mechanisms of histone acetylation. This mechanistic model led us to evaluate LAC levels in humans. We found that LAC levels, and not those of free carnitine, were decreased in patients with MDD compared with age- and sex-matched healthy controls in two independent study centers. Secondary exploratory analyses showed that the degree of LAC deficiency reflected both the severity and age of onset of MDD. Moreover, these analyses showed that the decrease in LAC was larger in patients with a history of treatment-resistant depression (TRD), among whom childhood trauma and, specifically, a history of emotional neglect and being female, predicted the decreased LAC. These findings suggest that LAC may serve as a candidate biomarker to help diagnose a clinical endophenotype of MDD characterized by decreased LAC, greater severity, and earlier onset as well as a history of childhood trauma in patients with TRD. Together with studies in rodents, these translational findings support further exploration of LAC as a therapeutic target that may help to define individualized treatments in biologically based depression subtype consistent with the spirit of precision medicine.
PMID: 30061399
ISSN: 1091-6490
CID: 5022882

The neuropsychopharmacology of acetyl-L-carnitine (LAC): basic, translational and therapeutic implications

Bigio, Benedetta; Azam, Shofiul; Mathé, Aleksander A.; Nasca, Carla
Mitochondrial metabolism can contribute to nuclear histone acetylation among other epigenetic mechanisms. A central aspect of this signaling pathway is acetyl-L-carnitine (LAC), a pivotal mitochondrial metabolite best known for its role in fatty acid oxidation. Work from our and other groups suggested LAC as a novel epigenetic modulator of brain plasticity and a therapeutic target for clinical phenotypes of depression linked to childhood trauma. Aberrant mitochondrial metabolism of LAC has also been implicated in the pathophysiology of Alzheimer"™s disease. Furthermore, mitochondrial dysfunction is linked to other processes implicated in the pathophysiology of both major depressive disorders and Alzheimer"™s disease, such as oxidative stress, inflammation, and insulin resistance. In addition to the rapid epigenetic modulation of glutamatergic function, preclinical studies showed that boosting mitochondrial metabolism of LAC protects against oxidative stress, rapidly ameliorates insulin resistance, and reduces neuroinflammation by decreasing proinflammatory pathways such as NFkB in hippocampal and cortical neurons. These basic and translational neuroscience findings point to this mitochondrial signaling pathway as a potential target to identify novel mechanisms of brain plasticity and potential unique targets for therapeutic intervention targeted to specific clinical phenotypes.
SCOPUS:85181258455
ISSN: 2731-4383
CID: 5628912

Carnitine octanoyltransferase is important for the assimilation of exogenous acetyl-L-carnitine into acetyl-CoA in mammalian cells

Hsu, Jake; Fatuzzo, Nina; Weng, Nielson; Michno, Wojciech; Dong, Wentao; Kienle, Maryline; Dai, Yuqin; Pasca, Anca; Abu-Remaileh, Monther; Rasgon, Natalie; Bigio, Benedetta; Nasca, Carla; Khosla, Chaitan
In eukaryotes, carnitine is best known for its ability to shuttle esterified fatty acids across mitochondrial membranes for β-oxidation. It also returns to the cytoplasm, in the form of acetyl-L-carnitine (LAC), some of the resulting acetyl groups for posttranslational protein modification and lipid biosynthesis. While dietary LAC supplementation has been clinically investigated, its effects on cellular metabolism are not well understood. To explain how exogenous LAC influences mammalian cell metabolism, we synthesized isotope-labeled forms of LAC and its analogs. In cultures of glucose-limited U87MG glioma cells, exogenous LAC contributed more robustly to intracellular acetyl-CoA pools than did β-hydroxybutyrate, the predominant circulating ketone body in mammals. The fact that most LAC-derived acetyl-CoA is cytosolic is evident from strong labeling of fatty acids in U87MG cells by exogenous 13C2-acetyl-L-carnitine. We found that the addition of d3-acetyl-L-carnitine increases the supply of acetyl-CoA for cytosolic posttranslational modifications due to its strong kinetic isotope effect on acetyl-CoA carboxylase, the first committed step in fatty acid biosynthesis. Surprisingly, whereas cytosolic carnitine acetyltransferase is believed to catalyze acetyl group transfer from LAC to coenzyme A, CRAT-/- U87MG cells were unimpaired in their ability to assimilate exogenous LAC into acetyl-CoA. We identified carnitine octanoyltransferase as the key enzyme in this process, implicating a role for peroxisomes in efficient LAC utilization. Our work has opened the door to further biochemical investigations of a new pathway for supplying acetyl-CoA to certain glucose-starved cells.
PMCID:9898754
PMID: 36587768
ISSN: 1083-351x
CID: 5426272