Try a new search

Format these results:

Searched for:

person:browns02

in-biosketch:yes

Total Results:

77


Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei

Vega, Fernando E; Brown, Stuart M; Chen, Hao; Shen, Eric; Nair, Mridul B; Ceja-Navarro, Javier A; Brodie, Eoin L; Infante, Francisco; Dowd, Patrick F; Pain, Arnab
The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complex polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. The draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.
PMCID:4521149
PMID: 26228545
ISSN: 2045-2322
CID: 1698642

FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells

Murtha, Matthew; Tokcaer-Keskin, Zeynep; Tang, Zuojian; Strino, Francesco; Chen, Xi; Wang, Yatong; Xi, Xiangmei; Basilico, Claudio; Brown, Stuart; Bonneau, Richard; Kluger, Yuval; Dailey, Lisa
Promoters and enhancers establish precise gene transcription patterns. The development of functional approaches for their identification in mammalian cells has been complicated by the size of these genomes. Here we report a high-throughput functional assay for directly identifying active promoter and enhancer elements called FIREWACh (Functional Identification of Regulatory Elements Within Accessible Chromatin), which we used to simultaneously assess over 80,000 DNA fragments derived from nucleosome-free regions within the chromatin of embryonic stem cells (ESCs) and identify 6,364 active regulatory elements. Many of these represent newly discovered ESC-specific enhancers, showing enriched binding-site motifs for ESC-specific transcription factors including SOX2, POU5F1 (OCT4) and KLF4. The application of FIREWACh to additional cultured cell types will facilitate functional annotation of the genome and expand our view of transcriptional network dynamics.
PMCID:4020622
PMID: 24658142
ISSN: 1548-7091
CID: 970072

Effects of Nickel Treatment on H3K4 Trimethylation and Gene Expression

Tchou-Wong, Kam-Meng; Kiok, Kathrin; Tang, Zuojian; Kluz, Thomas; Arita, Adriana; Smith, Phillip R; Brown, Stuart; Costa, Max
Occupational exposure to nickel compounds has been associated with lung and nasal cancers. We have previously shown that exposure of the human lung adenocarcinoma A549 cells to NiCl(2) for 24 hr significantly increased global levels of trimethylated H3K4 (H3K4me3), a transcriptional activating mark that maps to the promoters of transcribed genes. To further understand the potential epigenetic mechanism(s) underlying nickel carcinogenesis, we performed genome-wide mapping of H3K4me3 by chromatin immunoprecipitation and direct genome sequencing (ChIP-seq) and correlated with transcriptome genome-wide mapping of RNA transcripts by massive parallel sequencing of cDNA (RNA-seq). The effect of NiCl(2) treatment on H3K4me3 peaks within 5,000 bp of transcription start sites (TSSs) on a set of genes highly induced by nickel in both A549 cells and human peripheral blood mononuclear cells were analyzed. Nickel exposure increased the level of H3K4 trimethylation in both the promoters and coding regions of several genes including CA9 and NDRG1 that were increased in expression in A549 cells. We have also compared the extent of the H3K4 trimethylation in the absence and presence of formaldehyde crosslinking and observed that crosslinking of chromatin was required to observe H3K4 trimethylation in the coding regions immediately downstream of TSSs of some nickel-induced genes including ADM and IGFBP3. This is the first genome-wide mapping of trimethylated H3K4 in the promoter and coding regions of genes induced after exposure to NiCl(2). This study may provide insights into the epigenetic mechanism(s) underlying the carcinogenicity of nickel compounds
PMCID:3063782
PMID: 21455298
ISSN: 1932-6203
CID: 130306

Genomics-based identification of self-ligands with T cell receptor-specific biological activity

Santori, Fabio R; Brown, Stuart M; Vukmanovic, Stanislav
Self-peptide/major histocompatibility complex (MHC) complexes profoundly influence the biology of T lymphocytes. They promote the selection of the T cell receptor (TCR) repertoire in the thymus, maintain the homeostasis of peripheral T cells prior to encounter with antigen, and modify the responsiveness of T cells to foreign antigens. In addition, they can serve as antigens for autoaggressive T cells that induce autoimmune diseases. The complete sequencing of the genomes of human, mouse, and many pathogenic organisms now provides us with a comprehensive list of all possible proteins that may be the source of foreign antigenic and self-peptides. A computational approach using profile-based similarity searches on potential self-MHC-binding peptides can be used to efficiently predict self-peptides with biological activities. The common feature of the identified peptides is similarity to antigen. Thus, self-peptides may form 'hazy' images of the universe of antigens that are used as templates to create and maintain the TCR repertoire
PMID: 12493012
ISSN: 0105-2896
CID: 34692

Trends and developments in bioinformatics in 2010: prospects and perspectives

Aliferis, C F; Alekseyenko, A V; Aphinyanaphongs, Y; Brown, S; Fenyo, D; Fu, L; Shen, S; Statnikov, A; Wang, J
OBJECTIVES: To survey major developments and trends in the field of Bioinformatics in 2010 and their relationships to those of previous years, with emphasis on long-term trends, on best practices, on quality of the science of informatics, and on quality of science as a function of informatics. METHODS: A critical review of articles in the literature of Bioinformatics over the past year. RESULTS: Our main results suggest that Bioinformatics continues to be a major catalyst for progress in Biology and Translational Medicine, as a consequence of new assaying technologies, most pre-dominantly Next Generation Sequencing, which are changing the landscape of modern biological and medical research. These assays critically depend on bioinformatics and have led to quick growth of corresponding informatics methods development. Clinical-grade molecular signatures are proliferating at a rapid rate. However, a highly publicized incident at a prominent university showed that deficiencies in informatics methods can lead to catastrophic consequences for important scientific projects. Developing evidence-driven protocols and best practices is greatly needed given how serious are the implications for the quality of translational and basic science. CONCLUSIONS: Several exciting new methods have appeared over the past 18 months, that open new roads for progress in bioinformatics methods and their impact in biomedicine. At the same time, the range of open problems of great significance is extensive, ensuring the vitality of the field for many years to come.
PMID: 21938341
ISSN: 0943-4747
CID: 174460

Transcriptome of axenic liver stages of Plasmodium yoelii

Wang, Qian; Brown, Stuart; Roos, David S; Nussenzweig, Victor; Bhanot, Purnima
Plasmodium liver stages or early exo-eythrocytic forms (EEFs) contain antigens that are essential for achieving sterile, protective immunity against malaria. Yet, attempts at identifying these antigens have been hampered by the challenge of obtaining large numbers of purified EEFs, uncontaminated with hepatocyte material. Using a recently described system for producing axenically cultured EEFs from Plasmodium yoelii, we have constructed a cDNA library and generated 1453 expressed sequence tags (ESTs) resulting in 652 unique transcripts. Analysis of the library provides insight into processes required for the initiation and development of Plasmodium liver stages, such as protein degradation, cell cycle progression and nutrient transport. Analysis of the gene expression profile of liver stages, as revealed by this library, suggests that liver stages represent a shift from 'sporozoite-like' to 'blood-stage-like'. This is the first study of the transcriptional repertoire of Plasmodium liver stages
PMID: 15279962
ISSN: 0166-6851
CID: 48869

Cloud-based next-generation sequencing infomatics

Chapter by: Krampis, Konstantinos; Efstathiadis, Efstratios; Brown, Stuart M
in: Next-generation DNA sequencing informatics by Brown, Stuart M [Eds]
Cold Spring Harbor, New York : Cold Spring Harbor Laboratory Press, 2015
pp. 361-370
ISBN: 1621821234
CID: 1681522

De novo assembly and annotation of the singing mouse genome

Smith, Samantha K; Frazel, Paul W; Khodadadi-Jamayran, Alireza; Zappile, Paul; Marier, Christian; Okhovat, Mariam; Brown, Stuart; Long, Michael A; Heguy, Adriana; Phelps, Steven M
BACKGROUND:Developing genomic resources for a diverse range of species is an important step towards understanding the mechanisms underlying complex traits. Specifically, organisms that exhibit unique and accessible phenotypes-of-interest allow researchers to address questions that may be ill-suited to traditional model organisms. We sequenced the genome and transcriptome of Alston's singing mouse (Scotinomys teguina), an emerging model for social cognition and vocal communication. In addition to producing advertisement songs used for mate attraction and male-male competition, these rodents are diurnal, live at high-altitudes, and are obligate insectivores, providing opportunities to explore diverse physiological, ecological, and evolutionary questions. RESULTS:Using PromethION, Illumina, and PacBio sequencing, we produced an annotated genome and transcriptome, which were validated using gene expression and functional enrichment analyses. To assess the usefulness of our assemblies, we performed single nuclei sequencing on cells of the orofacial motor cortex, a brain region implicated in song coordination, identifying 12 cell types. CONCLUSIONS:These resources will provide the opportunity to identify the molecular basis of complex traits in singing mice as well as to contribute data that can be used for large-scale comparative analyses.
PMCID:10521431
PMID: 37749493
ISSN: 1471-2164
CID: 5606392

Oral Microbiome in Nonsmoker Patients with Oral Cavity Squamous Cell Carcinoma, Defined by Metagenomic Shotgun Sequencing

Ganly, Ian; Hao, Yuhan; Rosenthal, Matthew; Wang, Hongmei; Migliacci, Jocelyn; Huang, Bin; Katabi, Nora; Brown, Stuart; Tang, Yi Wei; Pei, Zhiheng; Yang, Liying
Objectives: Smoking is the commonest cause of oral cavity squamous cell carcinoma (OC-SCC), but the etiology of OC-SCC in nonsmokers is unknown. Our primary goal was to use metagenomic shotgun sequencing (MSS) to define the taxonomic composition and functional potential of oral metagenome in nonsmokers with OC-SCC. Methods: We conducted a case"“control study with 42 OC-SCC case and 45 control nonsmokers. MSS was performed on DNA extracted from mouthwash samples. Taxonomic analysis and pathway analysis were done using MetaPhlAn2 and HUMAnN2, respectively. Statistical difference was determined using the Mann"“Whitney test controlling false discovery rate. Results: There was no significant difference in age, sex, race, or alcohol consumption between OC-SCC and control patients. There was a significant difference in beta diversity between OC-SCC and controls. At the phylum level, Bacteroidetes and Synergistetes were overly represented in OC-SCC while Actinobacteria and Firmicutes were overly represented in controls. At the genus level, Fusobacterium was overly represented in OC-SCC compared with controls, while Corynebacterium, Streptococcus, Actinomyces, Cryptobacterium, and Selenomonas were overly represented in controls. Bacterial pathway analysis identified overrepresentation in OC-SCC of pathways related to metabolism of flavin, biotin, thiamin, heme, sugars, fatty acids, peptidoglycans, and tRNA and overrepresentation of nucleotides and essential amino acids in controls. Conclusions: The oral microbiome in nonsmoker patients with OC-SCC is significantly different from that of nonsmoker control patients in taxonomic compositions and functional potentials. Our study"™s MSS findings matched with previous 16S-based methods in taxonomic differentiation but varied greatly in functional differentiation of microbiomes in OC-SCC and controls.
SCOPUS:85144924410
ISSN: 2072-6694
CID: 5407652

Progressive dysbiosis of human orodigestive microbiota along the sequence of gastroesophageal reflux, Barrett's esophagus and esophageal adenocarcinoma

Hao, Yuhan; Karaoz, Ulas; Yang, Liying; Yachimski, Patrick S; Tseng, Wenzhi; Nossa, Carlos W; Ye, Weimin; Tseng, Mengkao; Poles, Michael; Francois, Fritz; Traube, Morris; Brown, Stuart M; Chen, Yu; Torralba, Manolito; Peek, Richard M; Brodie, Eoin L; Pei, Zhiheng
The incidence of esophageal adenocarcinoma (EA) has drastically increased in the United States since 1970s for unclear reasons. We hypothesized that the widespread usage of antibiotics has increased the procarcinogenic potential of the orodigestive microbiota along the sequence of gastroesophageal reflux (GR), Barrett's esophagus (BE) and EA phenotypes. This case control study included normal controls (NC) and three disease phenotypes GR, BE and EA. Microbiota in the mouth, esophagus, and stomach, and rectum were analyzed using 16S rRNA gene sequencing. Overall, we discovered 44 significant pairwise differences in abundance of microbial taxa between the four phenotypes, with 12 differences in the mouth, 21 in the esophagus, two in the stomach, and nine in the rectum. Along the GR→BE→EA sequence, oral and esophageal microbiota were more diversified, the dominant genus Streptococcus was progressively depleted while six other genera Atopobium, Actinomyces, Veillonella, Ralstonia, Burkholderia and Lautropia progressively enriched. In NC, Streptococcus appeared to control populations of other genera in the foregut via numerous negative and positive connections, while in disease states, the rich network was markedly simplified. Inferred gene functional content showed a progressive enrichment through the stages of EA development in genes encoding antibiotic resistance, ligands of Toll-like and NOD-like receptors, nitrate-nitrite-nitric oxide pathway and acetaldehyde metabolism. The orodigestive microbiota is in a progressive dysbiotic state along the GR-BE-EA sequence. The increasing dysbiosis and antibiotic and procarcinogenic genes in the disease states warrants further study to define their roles in EA pathogenesis.
PMID: 35751398
ISSN: 1097-0215
CID: 5282362