Try a new search

Format these results:

Searched for:

person:cerrom01

in-biosketch:yes

Total Results:

84


AAV-Mediated Delivery of Plakophilin-2a Arrests Progression of Arrhythmogenic Right Ventricular Cardiomyopathy in Murine Hearts: Preclinical Evidence Supporting Gene Therapy in Humans

van Opbergen, Chantal J M; Narayanan, Bitha; B Sacramento, Chester; Stiles, Katie M; Mishra, Vartika; Frenk, Esther; Ricks, David; Chen, Grace; Zhang, Mingliang; Yarabe, Paul; Schwartz, Jonathan; Delmar, Mario; Herzog, Chris D; Cerrone, Marina
BACKGROUND/UNASSIGNED:gene to an adult mammalian heart deficient in PKP2 can arrest disease progression and significantly prolong survival. METHODS/UNASSIGNED:Experiments were performed using a PKP2-cKO (cardiac-specific, tamoxifen-activated deletion of plakophilin-2). The potential therapeutic, adeno-associated virus vector of serotype rh.74 (AAVrh.74)-PKP2a (PKP2 variant A; RP-A601) is a recombinant AAVrh.74 gene therapy viral vector encoding the human PKP2a. AAVrh.74-PKP2a was delivered to adult mice by a single tail vein injection either before or after tamoxifen-activated PKP2-cKO. PKP2 expression was confirmed by molecular and histopathologic analyses. Cardiac function and disease progression were monitored by survival analyses, echocardiography, and electrocardiography. RESULTS/UNASSIGNED:Consistent with prior findings, loss of PKP2 expression caused 100% mortality within 50 days after tamoxifen injection. In contrast, AAVrh.74-PKP2a-mediated PKP2a expression resulted in 100% survival for >5 months (at study termination). Echocardiographic analysis revealed that AAVrh.74-PKP2a prevented right ventricle dilation, arrested left ventricle functional decline, and mitigated arrhythmia burden. Molecular and histological analyses showed AAVrh.74-PKP2a-mediated transgene mRNA and protein expression and appropriate PKP2 localization at the cardiomyocyte intercalated disc. Importantly, the therapeutic benefit was shown in mice receiving AAVrh.74-PKP2a after disease onset. CONCLUSIONS/UNASSIGNED:These preclinical data demonstrate the potential for AAVrh.74-PKP2a (RP-A601) as a therapeutic for PKP2-related arrhythmogenic right ventricular cardiomyopathy in both early and more advanced stages of the disease.
PMID: 38288614
ISSN: 2574-8300
CID: 5627442

Clinical Management of Brugada Syndrome: Commentary From the Experts

Cutler, Michael J; Eckhardt, Lee L; Kaufman, Elizabeth S; Arbelo, Elena; Behr, Elijah R; Brugada, Pedro; Cerrone, Marina; Crotti, Lia; DeAsmundis, Carlo; Gollob, Michael H; Horie, Minoru; Huang, David T; Krahn, Andrew D; London, Barry; Lubitz, Steven A; Mackall, Judith A; Nademanee, Koonlawee; Perez, Marco V; Probst, Vincent; Roden, Dan M; Sacher, Frederic; Sarquella-Brugada, Georgia; Scheinman, Melvin M; Shimizu, Wataru; Shoemaker, Benjamin; Sy, Raymond W; Watanabe, Atsuyuki; Wilde, Arthur A M
Although there is consensus on the management of patients with Brugada Syndrome with high risk for sudden cardiac arrest, asymptomatic or intermediate-risk patients present clinical management challenges. This document explores the management opinions of experts throughout the world for patients with Brugada Syndrome who do not fit guideline recommendations. Four real-world clinical scenarios were presented with commentary from small expert groups for each case. All authors voted on case-specific questions to evaluate the level of consensus among the entire group in nuanced diagnostic and management decisions relevant to each case. Points of agreement, points of controversy, and gaps in knowledge are highlighted.
PMID: 38099441
ISSN: 1941-3084
CID: 5588972

Enhancing the interpretation of genetic observations in KCNQ1 in unselected populations: relevance to secondary findings

Novelli, Valeria; Faultless, Trent; Cerrone, Marina; Care, Melanie; Manzoni, Martina; Bober, Sara L; Adler, Arnon; De-Giorgio, Fabio; Spears, Danna; Gollob, Michael H
AIMS/OBJECTIVE:Rare variants in the KCNQ1 gene are found in the healthy population to a much greater extent than the prevalence of Long QT Syndrome type 1 (LQTS1). This observation creates challenges in the interpretation of KCNQ1 rare variants that may be identified as secondary findings in whole exome sequencing.This study sought to identify missense variants within sub-domains of the KCNQ1-encoded Kv7.1 potassium channel that would be highly predictive of disease in the context of secondary findings. METHODS AND RESULTS/RESULTS:We established a set of KCNQ1 variants reported in over 3700 patients with diagnosed or suspected LQTS sent for clinical genetic testing and compared the domain-specific location of identified variants to those observed in an unselected population of 140 000 individuals. We identified three regions that showed a significant enrichment of KCNQ1 variants associated with LQTS at an odds ratio (OR) >2: the pore region, and the adjacent 5th (S5) and 6th (S6) transmembrane (TM) regions. An additional segment within the carboxyl terminus of Kv7.1, conserved region 2 (CR2), also showed an increased OR of disease association. Furthermore, the TM spanning S5-Pore-S6 region correlated with a significant increase in cardiac events. CONCLUSION/CONCLUSIONS:Rare missense variants with a clear phenotype of LQTS have a high likelihood to be present within the pore and adjacent TM segments (S5-Pore-S6) and a greater tendency to be present within CR2. This data will enhance interpretation of secondary findings within the KCNQ1 gene. Further, our data support a more severe phenotype in LQTS patients with variants within the S5-Pore-S6 region.
PMCID:10637310
PMID: 37897496
ISSN: 1532-2092
CID: 5609652

Introducing a new Heart Rhythm series: Heart Rhythm Society Committee/Council Viewpoints

Morin, Daniel P; Cerrone, Marina; Goldense, Dana; Joza, Jacqueline E; Kaufman, Elizabeth S; Law, Ian H; Prasad, Karthik Venkatesh; Moss, Joshua D
PMID: 36725137
ISSN: 1556-3871
CID: 5420152

Ca2+ dysregulation in cardiac stromal cells sustains fibro-adipose remodeling in Arrhythmogenic Cardiomyopathy and can be modulated by flecainide

Maione, Angela S; Faris, Pawan; Iengo, Lara; Catto, Valentina; Bisonni, Luca; Lodola, Francesco; Negri, Sharon; Casella, Michela; Guarino, Anna; Polvani, Gianluca; Cerrone, Marina; Tondo, Claudio; Pompilio, Giulio; Sommariva, Elena; Moccia, Francesco
BACKGROUND:toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS/RESULTS:oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS:dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM.
PMID: 36371290
ISSN: 1479-5876
CID: 5357772

The Genetics of Brugada Syndrome

Cerrone, Marina; Costa, Sarah; Delmar, Mario
Brugada syndrome is a heritable channelopathy characterized by a peculiar electrocardiogram (ECG) pattern and increased risk of cardiac arrhythmias and sudden death. The arrhythmias originate because of an imbalance between the repolarizing and depolarizing currents that modulate the cardiac action potential. Even if an overt structural cardiomyopathy is not typical of Brugada syndrome, fibrosis and structural changes in the right ventricle contribute to a conduction slowing, which ultimately facilitates ventricular arrhythmias. Currently, Mendelian autosomal dominant transmission is detected in less than 25% of all clinical confirmed cases. Although 23 genes have been associated with the condition, only SCN5A, encoding the cardiac sodium channel, is considered clinically actionable and disease causing. The limited monogenic inheritance has pointed toward new perspectives on the possible complex genetic architecture of the disease, involving polygenic inheritance and a polygenic risk score that can influence penetrance and risk stratification. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
PMID: 35567276
ISSN: 1545-293x
CID: 5215132

Loss of Nuclear Envelope Integrity and Increased Oxidant Production Cause DNA Damage in Adult Hearts Deficient in PKP2: A Molecular Substrate of ARVC

Pérez-Hernández, Marta; van Opbergen, Chantal J M; Bagwan, Navratan; Rasmus Vissing, Christoffer; Marrón-Liñares, Grecia M; Zhang, Mingliang; Torres Vega, Estefania; Sorrentino, Andrea; Drici, Lylia; Sulek, Karolina; Zhai, Ruxu; Hansen, Finn B; Hørby Christensen, Alex; Boesgaard, Søren; Gustafsson, Finn; Rossing, Kasper; Small, Eric M; Davies, Michael J; Rothenberg, Eli; Sato, Priscila; Cerrone, Marina; Jensen, Thomas Hartvig Lindkær; Qvortrup, Klaus; Bundgaard, Henning; Delmar, Mario; Lundby, Alicia
BACKGROUND:gene, which encodes the PKP2 protein (plakophilin-2). METHODS:studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS: CONCLUSIONS:
PMID: 35959657
ISSN: 1524-4539
CID: 5287322

Exercise Causes Arrhythmogenic Remodeling of Intracellular Calcium Dynamics in Plakophilin-2-Deficient Hearts

van Opbergen, Chantal J M; Bagwan, Navratan; Maurya, Svetlana R; Kim, Joon-Chul; Smith, Abigail N; Blackwell, Daniel J; Johnston, Jeffrey N; Knollmann, Björn C; Cerrone, Marina; Lundby, Alicia; Delmar, Mario
BACKGROUND: METHODS:Experiments were performed in myocytes from a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout murine line (PKP2cKO). For training, mice underwent 75 minutes of treadmill running once per day, 5 days each week for 6 weeks. We used multiple approaches including imaging, high-resolution mass spectrometry, electrocardiography, and pharmacological challenges to study the functional properties of cells/hearts in vitro and in vivo. RESULTS: CONCLUSIONS:
PMCID:9086182
PMID: 35491884
ISSN: 1524-4539
CID: 5235702

Author Correction: Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility

Barc, Julien; Tadros, Rafik; Glinge, Charlotte; Chiang, David Y; Jouni, Mariam; Simonet, Floriane; Jurgens, Sean J; Baudic, Manon; Nicastro, Michele; Potet, Franck; Offerhaus, Joost A; Walsh, Roddy; Choi, Seung Hoan; Verkerk, Arie O; Mizusawa, Yuka; Anys, Soraya; Minois, Damien; Arnaud, Marine; Duchateau, Josselin; Wijeyeratne, Yanushi D; Muir, Alison; Papadakis, Michael; Castelletti, Silvia; Torchio, Margherita; Ortuño, Cristina Gil; Lacunza, Javier; Giachino, Daniela F; Cerrato, Natascia; Martins, Raphaël P; Campuzano, Oscar; Van Dooren, Sonia; Thollet, Aurélie; Kyndt, Florence; Mazzanti, Andrea; Clémenty, Nicolas; Bisson, Arnaud; Corveleyn, Anniek; Stallmeyer, Birgit; Dittmann, Sven; Saenen, Johan; Noël, Antoine; Honarbakhsh, Shohreh; Rudic, Boris; Marzak, Halim; Rowe, Matthew K; Federspiel, Claire; Le Page, Sophie; Placide, Leslie; Milhem, Antoine; Barajas-Martinez, Hector; Beckmann, Britt-Maria; Krapels, Ingrid P; Steinfurt, Johannes; Winkel, Bo Gregers; Jabbari, Reza; Shoemaker, Moore B; Boukens, Bas J; Å korić-Milosavljević, Doris; Bikker, Hennie; Manevy, Federico; Lichtner, Peter; Ribasés, Marta; Meitinger, Thomas; Müller-Nurasyid, Martina; Veldink, Jan H; van den Berg, Leonard H; Van Damme, Philip; Cusi, Daniele; Lanzani, Chiara; Rigade, Sidwell; Charpentier, Eric; Baron, Estelle; Bonnaud, Stéphanie; Lecointe, Simon; Donnart, Audrey; Le Marec, Hervé; Chatel, Stéphanie; Karakachoff, Matilde; Bézieau, Stéphane; London, Barry; Tfelt-Hansen, Jacob; Roden, Dan; Odening, Katja E; Cerrone, Marina; Chinitz, Larry A; Volders, Paul G; van de Berg, Maarten P; Laurent, Gabriel; Faivre, Laurence; Antzelevitch, Charles; Kääb, Stefan; Arnaout, Alain Al; Dupuis, Jean-Marc; Pasquie, Jean-Luc; Billon, Olivier; Roberts, Jason D; Jesel, Laurence; Borggrefe, Martin; Lambiase, Pier D; Mansourati, Jacques; Loeys, Bart; Leenhardt, Antoine; Guicheney, Pascale; Maury, Philippe; Schulze-Bahr, Eric; Robyns, Tomas; Breckpot, Jeroen; Babuty, Dominique; Priori, Silvia G; Napolitano, Carlo; de Asmundis, Carlo; Brugada, Pedro; Brugada, Ramon; Arbelo, Elena; Brugada, Josep; Mabo, Philippe; Behar, Nathalie; Giustetto, Carla; Molina, Maria Sabater; Gimeno, Juan R; Hasdemir, Can; Schwartz, Peter J; Crotti, Lia; McKeown, Pascal P; Sharma, Sanjay; Behr, Elijah R; Haissaguerre, Michel; Sacher, Frédéric; Rooryck, Caroline; Tan, Hanno L; Remme, Carol A; Postema, Pieter G; Delmar, Mario; Ellinor, Patrick T; Lubitz, Steven A; Gourraud, Jean-Baptiste; Tanck, Michael W; George, Alfred L; MacRae, Calum A; Burridge, Paul W; Dina, Christian; Probst, Vincent; Wilde, Arthur A; Schott, Jean-Jacques; Redon, Richard; Bezzina, Connie R
PMID: 35474365
ISSN: 1546-1718
CID: 5205632

Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility

Barc, Julien; Tadros, Rafik; Glinge, Charlotte; Chiang, David Y; Jouni, Mariam; Simonet, Floriane; Jurgens, Sean J; Baudic, Manon; Nicastro, Michele; Potet, Franck; Offerhaus, Joost A; Walsh, Roddy; Choi, Seung Hoan; Verkerk, Arie O; Mizusawa, Yuka; Anys, Soraya; Minois, Damien; Arnaud, Marine; Duchateau, Josselin; Wijeyeratne, Yanushi D; Muir, Alison; Papadakis, Michael; Castelletti, Silvia; Torchio, Margherita; Ortuño, Cristina Gil; Lacunza, Javier; Giachino, Daniela F; Cerrato, Natascia; Martins, Raphaël P; Campuzano, Oscar; Van Dooren, Sonia; Thollet, Aurélie; Kyndt, Florence; Mazzanti, Andrea; Clémenty, Nicolas; Bisson, Arnaud; Corveleyn, Anniek; Stallmeyer, Birgit; Dittmann, Sven; Saenen, Johan; Noël, Antoine; Honarbakhsh, Shohreh; Rudic, Boris; Marzak, Halim; Rowe, Matthew K; Federspiel, Claire; Le Page, Sophie; Placide, Leslie; Milhem, Antoine; Barajas-Martinez, Hector; Beckmann, Britt-Maria; Krapels, Ingrid P; Steinfurt, Johannes; Winkel, Bo Gregers; Jabbari, Reza; Shoemaker, Moore B; Boukens, Bas J; Å korić-Milosavljević, Doris; Bikker, Hennie; Manevy, Federico C; Lichtner, Peter; Ribasés, Marta; Meitinger, Thomas; Müller-Nurasyid, Martina; Veldink, Jan H; van den Berg, Leonard H; Van Damme, Philip; Cusi, Daniele; Lanzani, Chiara; Rigade, Sidwell; Charpentier, Eric; Baron, Estelle; Bonnaud, Stéphanie; Lecointe, Simon; Donnart, Audrey; Le Marec, Hervé; Chatel, Stéphanie; Karakachoff, Matilde; Bézieau, Stéphane; London, Barry; Tfelt-Hansen, Jacob; Roden, Dan; Odening, Katja E; Cerrone, Marina; Chinitz, Larry A; Volders, Paul G; van de Berg, Maarten P; Laurent, Gabriel; Faivre, Laurence; Antzelevitch, Charles; Kääb, Stefan; Arnaout, Alain Al; Dupuis, Jean-Marc; Pasquie, Jean-Luc; Billon, Olivier; Roberts, Jason D; Jesel, Laurence; Borggrefe, Martin; Lambiase, Pier D; Mansourati, Jacques; Loeys, Bart; Leenhardt, Antoine; Guicheney, Pascale; Maury, Philippe; Schulze-Bahr, Eric; Robyns, Tomas; Breckpot, Jeroen; Babuty, Dominique; Priori, Silvia G; Napolitano, Carlo; de Asmundis, Carlo; Brugada, Pedro; Brugada, Ramon; Arbelo, Elena; Brugada, Josep; Mabo, Philippe; Behar, Nathalie; Giustetto, Carla; Molina, Maria Sabater; Gimeno, Juan R; Hasdemir, Can; Schwartz, Peter J; Crotti, Lia; McKeown, Pascal P; Sharma, Sanjay; Behr, Elijah R; Haissaguerre, Michel; Sacher, Frédéric; Rooryck, Caroline; Tan, Hanno L; Remme, Carol A; Postema, Pieter G; Delmar, Mario; Ellinor, Patrick T; Lubitz, Steven A; Gourraud, Jean-Baptiste; Tanck, Michael W; George, Alfred L; MacRae, Calum A; Burridge, Paul W; Dina, Christian; Probst, Vincent; Wilde, Arthur A; Schott, Jean-Jacques; Redon, Richard; Bezzina, Connie R
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.
PMID: 35210625
ISSN: 1546-1718
CID: 5172442