Try a new search

Format these results:

Searched for:

person:chandh02

Total Results:

196


Patient-centered radiology: a roadmap for outpatient imaging

Recht, Michael P; Donoso-Bach, Lluís; Brkljačić, Boris; Chandarana, Hersh; Jankharia, Bhavin; Mahoney, Mary C
Creating a patient-centered experience is becoming increasingly important for radiology departments around the world. The goal of patient-centered radiology is to ensure that radiology services are sensitive to patients' needs and desires. This article provides a framework for addressing the patient's experience by dividing their imaging journey into three distinct time periods: pre-exam, day of exam, and post-exam. Each time period has aspects that can contribute to patient anxiety. Although there are components of the patient journey that are common in all regions of the world, there are also unique features that vary by location. This paper highlights innovative solutions from different parts of the world that have been introduced in each of these time periods to create a more patient-centered experience. CLINICAL RELEVANCE STATEMENT: Adopting innovative solutions that help patients understand their imaging journey and decrease their anxiety about undergoing an imaging examination are important steps in creating a patient centered imaging experience. KEY POINTS: • Patients often experience anxiety during their imaging journey and decreasing this anxiety is an important component of patient centered imaging. • The patient imaging journey can be divided into three distinct time periods: pre-exam, day of exam, and post-exam. • Although components of the imaging journey are common, there are local differences in different regions of the world that need to be considered when constructing a patient centered experience.
PMID: 38047974
ISSN: 1432-1084
CID: 5595272

The Role of Proton MRI to Evaluate Patient Pathophysiology in Severe Asthma

Moore, William H; Chandarana, Hersh
PMID: 38166342
ISSN: 2638-6135
CID: 5626022

Feasibility of Accelerated Prostate Diffusion-Weighted Imaging on 0.55 T MRI Enabled With Random Matrix Theory Denoising

Lemberskiy, Gregory; Chandarana, Hersh; Bruno, Mary; Ginocchio, Luke A; Huang, Chenchan; Tong, Angela; Keerthivasan, Mahesh Bharath; Fieremans, Els; Novikov, Dmitry S
INTRODUCTION/BACKGROUND:Prostate cancer diffusion weighted imaging (DWI) MRI is typically performed at high-field strength (3.0 T) in order to overcome low signal-to-noise ratio (SNR). In this study, we demonstrate the feasibility of prostate DWI at low field enabled by random matrix theory (RMT)-based denoising, relying on the MP-PCA algorithm applied during image reconstruction from multiple coils. METHODS:Twenty-one volunteers and 2 prostate cancer patients were imaged with a 6-channel pelvic surface array coil and an 18-channel spine array on a prototype 0.55 T system created by ramping down a commercial magnetic resonance imaging system (1.5 T MAGNETOM Aera Siemens Healthcare) with 45 mT/m gradients and 200 T/m/s slew rate. Diffusion-weighted imagings were acquired with 4 non-collinear directions, for which b = 50 s/mm2 was used with 8 averages and b = 1000 s/mm2 with 40 averages; 2 extra b = 50 s/mm2 were used as part of the dynamic field correction. Standard and RMT-based reconstructions were applied on DWI over different ranges of averages. Accuracy/precision was evaluated using the apparent diffusion coefficient (ADC), and image quality was evaluated over 5 separate reconstructions by 3 radiologists with a 5-point Likert scale. For the 2 patients, we compare image quality and lesion visibility of the RMT reconstruction versus the standard one on 0.55 T and on clinical 3.0 T. RESULTS:The RMT-based reconstruction in this study reduces the noise floor by a factor of 5.8, thereby alleviating the bias on prostate ADC. Moreover, the precision of the ADC in prostate tissue after RMT increases over a range of 30%-130%, with the increase in both signal-to-noise ratio and precision being more prominent for a low number of averages. Raters found that the images were consistently of moderate to good overall quality (3-4 on the Likert scale). Moreover, they determined that b = 1000 s/mm2 images from a 1:55-minute scan with the RMT-based reconstruction were on par with the corresponding images from a 14:20-minute scan with standard reconstruction. Prostate cancer was visible on ADC and calculated b = 1500 images even with the abbreviated 1:55 scan reconstructed with RMT. CONCLUSIONS:Prostate imaging using DWI is feasible at low field and can be performed more rapidly with noninferior image quality compared with standard reconstruction.
PMID: 37222526
ISSN: 1536-0210
CID: 5543722

Comparison of a Deep Learning-Accelerated vs. Conventional T2-Weighted Sequence in Biparametric MRI of the Prostate

Tong, Angela; Bagga, Barun; Petrocelli, Robert; Smereka, Paul; Vij, Abhinav; Qian, Kun; Grimm, Robert; Kamen, Ali; Keerthivasan, Mahesh B; Nickel, Marcel Dominik; von Busch, Heinrich; Chandarana, Hersh
BACKGROUND:Demand for prostate MRI is increasing, but scan times remain long even in abbreviated biparametric MRIs (bpMRI). Deep learning can be leveraged to accelerate T2-weighted imaging (T2WI). PURPOSE/OBJECTIVE:To compare conventional bpMRIs (CL-bpMRI) with bpMRIs including a deep learning-accelerated T2WI (DL-bpMRI) in diagnosing prostate cancer. STUDY TYPE/METHODS:Retrospective. POPULATION/METHODS:Eighty consecutive men, mean age 66 years (47-84) with suspected prostate cancer or prostate cancer on active surveillance who had a prostate MRI from December 28, 2020 to April 28, 2021 were included. Follow-up included prostate biopsy or stability of prostate-specific antigen (PSA) for 1 year. FIELD STRENGTH AND SEQUENCES/UNASSIGNED:. ASSESSMENT/RESULTS:CL-bpMRI and DL-bpMRI including the same conventional diffusion-weighted imaging (DWI) were presented to three radiologists (blinded to acquisition method) and to a deep learning computer-assisted detection algorithm (DL-CAD). The readers evaluated image quality using a 4-point Likert scale (1 = nondiagnostic, 4 = excellent) and graded lesions using Prostate Imaging Reporting and Data System (PI-RADS) v2.1. DL-CAD identified and assigned lesions of PI-RADS 3 or greater. STATISTICAL TESTS/METHODS:Quality metrics were compared using Wilcoxon signed rank test, and area under the receiver operating characteristic curve (AUC) were compared using Delong's test. SIGNIFICANCE/CONCLUSIONS:P = 0.05. RESULTS:Eighty men were included (age: 66 ± 9 years; 17/80 clinically significant prostate cancer). Overall image quality results by the three readers (CL-T2, DL-T2) are reader 1: 3.72 ± 0.53, 3.89 ± 0.39 (P = 0.99); reader 2: 3.33 ± 0.82, 3.31 ± 0.74 (P = 0.49); reader 3: 3.67 ± 0.63, 3.51 ± 0.62. In the patient-based analysis, the reader results of AUC are (CL-bpMRI, DL-bpMRI): reader 1: 0.77, 0.78 (P = 0.98), reader 2: 0.65, 0.66 (P = 0.99), reader 3: 0.57, 0.60 (P = 0.52). Diagnostic statistics from DL-CAD (CL-bpMRI, DL-bpMRI) are sensitivity (0.71, 0.71, P = 1.00), specificity (0.59, 0.44, P = 0.05), positive predictive value (0.23, 0.24, P = 0.25), negative predictive value (0.88, 0.88, P = 0.48). CONCLUSION/CONCLUSIONS:Deep learning-accelerated T2-weighted imaging may potentially be used to decrease acquisition time for bpMRI. EVIDENCE LEVEL/METHODS:3. TECHNICAL EFFICACY/UNASSIGNED:Stage 2.
PMID: 36651358
ISSN: 1522-2586
CID: 5419182

Cardiac Phase and Flow Compensation Effects on REnal Flow and Microstructure AnisotroPy MRI in Healthy Human Kidney

Sigmund, Eric E; Mikheev, Artem; Brinkmann, Inge M; Gilani, Nima; Babb, James S; Basukala, Dibash; Benkert, Thomas; Veraart, Jelle; Chandarana, Hersh
BACKGROUND:Renal diffusion-weighted imaging (DWI) involves microstructure and microcirculation, quantified with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and hybrid models. A better understanding of their contrast may increase specificity. PURPOSE/OBJECTIVE:To measure modulation of DWI with cardiac phase and flow-compensated (FC) diffusion gradient waveforms. STUDY TYPE/METHODS:Prospective. POPULATION/METHODS:Six healthy volunteers (ages: 22-48 years, five females), water phantom. FIELD STRENGTH/SEQUENCE/UNASSIGNED:3-T, prototype DWI sequence with 2D echo-planar imaging, and bipolar (BP) or FC gradients. 2D Half-Fourier Single-shot Turbo-spin-Echo (HASTE). Multiple-phase 2D spoiled gradient-echo phase contrast (PC) MRI. ASSESSMENT/RESULTS:), for each tissue (cortex/medulla, segmented on b0/FA respectively), phase, and waveform (BP, FC). Monte Carlo water diffusion simulations aided data interpretation. STATISTICAL TESTS/METHODS:Mixed model regression probed differences between tissue types and pulse sequences. Univariate general linear model analysis probed variations among cardiac phases. Spearman correlations were measured between diffusion metrics and renal artery velocities. Statistical significance level was set at P < 0.05. RESULTS:, MD for FC. FA correlated significantly with velocity. Monte Carlo simulations indicated medullary measurements were consistent with a 34 μm tubule diameter. DATA CONCLUSION/CONCLUSIONS:Cardiac gating and flow compensation modulate of measurements of renal diffusion. EVIDENCE LEVEL/METHODS:2 TECHNICAL EFFICACY STAGE: 2.
PMID: 36399101
ISSN: 1522-2586
CID: 5371702

MP-RAVE: IR-Prepared T1 -Weighted Radial Stack-of-Stars 3D GRE imaging with retrospective motion correction

Solomon, Eddy; Lotan, Eyal; Zan, Elcin; Sodickson, Daniel K; Block, Kai Tobias; Chandarana, Hersh
PURPOSE/OBJECTIVE:-weighted radial stack-of-stars 3D gradient echo (GRE) sequence with comparable image quality to conventional MP-RAGE and to demonstrate how the radial acquisition scheme can be utilized for additional retrospective motion correction to improve robustness to head motion. METHODS:The proposed sequence, named MP-RAVE, has been derived from a previously described radial stack-of-stars 3D GRE sequence (RAVE) and includes a 180° inversion recovery pulse that is generated once for every stack of radial views. The sequence is combined with retrospective 3D motion correction to improve robustness. The effectiveness has been evaluated in phantoms and healthy volunteers and compared to conventional MP-RAGE acquisition. RESULTS:MP-RAGE and MP-RAVE anatomical images were rated "good" to "excellent" in overall image quality, with artifact level between "mild" and "no artifacts", and with no statistically significant difference between methods. During head motion, MP-RAVE showed higher inherent robustness with artifacts confined to local brain regions. In combination with motion correction, MP-RAVE provided noticeably improved image quality during different head motion and showed statistically significant improvement in image sharpness. CONCLUSION/CONCLUSIONS:MP-RAVE provides comparable image quality and contrast to conventional MP-RAGE with improved robustness to head motion. In combination with retrospective 3D motion correction, MP-RAVE can be a useful alternative to MP-RAGE, especially in non-cooperative or pediatric patients.
PMID: 36763847
ISSN: 1522-2594
CID: 5426992

Characterization of motion dependent magnetic field inhomogeneity for DWI in the kidneys

Gilani, Nima; Mikheev, Artem; Brinkmann, Inge M; Basukala, Dibash; Benkert, Thomas; Kumbella, Malika; Babb, James S; Chandarana, Hersh; Sigmund, Eric E
PURPOSE:Diffusion-weighted imaging (DWI) of the abdomen has increased dramatically for both research and clinical purposes. Motion and static field inhomogeneity related challenges limit image quality of abdominopelvic imaging with the most conventional echo-planar imaging (EPI) pulse sequence. While reversed phase encoded imaging is increasingly used to facilitate distortion correction, it typically assumes one motion independent magnetic field distribution. In this study, we describe a more generalized workflow for the case of kidney DWI in which the field inhomogeneity at multiple respiratory phases is mapped and used to correct all images in a multi-contrast DWI series. METHODS:In this HIPAA-compliant and IRB-approved prospective study, 8 volunteers (6 M, ages 28-51) had abdominal imaging performed in a 3 T MRI system (MAGNETOM Prisma; Siemens Healthcare, Erlangen, Germany) with ECG gating. Coronal oblique T2-weighted HASTE images were collected for anatomical reference. Sagittal phase-contrast (PC) MRI images through the left renal artery were collected to determine systolic and diastolic phases. Cardiac triggered oblique coronal DWI were collected at 10 b-values between 0 and 800 s/mm2 and 12 directions. DWI series were distortion corrected using field maps generated by forward and reversed phase encoded b = 0 images collected over the full respiratory cycle and matched by respiratory phase. Morphologic accuracy, intraseries spatial variability, and diffusion tensor imaging (DTI) metrics mean diffusivity (MD) and fractional anisotropy (FA) were compared for results generated with no distortion correction, correction with only one respiratory bin, and correction with multiple respiratory bins across the breathing cycle. RESULTS:Computed field maps showed significant variation in static field with kidney laterality, region, and respiratory phase. Distortion corrected images showed significantly better registration to morphologic images than uncorrected images; for the left kidney, the multiple bin correction outperformed one bin correction. Line profile analysis showed significantly reduced spatial variation with multiple bins than one bin correction. DTI metrics were mostly similar between correction methods, with some differences observed in MD between uncorrected and corrected datasets. CONCLUSIONS:Our results indicate improved morphology of kidney DWI and derived parametric maps as well as reduced variability over the full image series using the motion-resolved distortion correction. This work highlights some morphologic and quantitative metric improvements can be obtained for kidney DWI when distortion correction is performed in a respiratory-resolved manner.
PMCID:10108090
PMID: 36924807
ISSN: 1873-5894
CID: 5462552

Pancreatic Cystic Lesions: Next Generation of Radiologic Assessment

Huang, Chenchan; Chopra, Sumit; Bolan, Candice W; Chandarana, Hersh; Harfouch, Nassier; Hecht, Elizabeth M; Lo, Grace C; Megibow, Alec J
Pancreatic cystic lesions are frequently identified on cross-sectional imaging. As many of these are presumed branch-duct intraductal papillary mucinous neoplasms, these lesions generate much anxiety for the patients and clinicians, often necessitating long-term follow-up imaging and even unnecessary surgical resections. However, the incidence of pancreatic cancer is overall low for patients with incidental pancreatic cystic lesions. Radiomics and deep learning are advanced tools of imaging analysis that have attracted much attention in addressing this unmet need, however, current publications on this topic show limited success and large-scale research is needed.
PMID: 37245934
ISSN: 1558-1950
CID: 5541852

Kz-accelerated variable-density stack-of-stars MRI

Li, Zhitao; Huang, Chenchan; Tong, Angela; Chandarana, Hersh; Feng, Li
This work aimed to develop a modified stack-of-stars golden-angle radial sampling scheme with variable-density acceleration along the slice (kz) dimension (referred to as VD-stack-of-stars) and to test this new sampling trajectory with multi-coil compressed sensing reconstruction for rapid motion-robust 3D liver MRI. VD-stack-of-stars sampling implements additional variable-density undersampling along the kz dimension, so that slice resolution (or volumetric coverage) can be increased without prolonging scan time. The new sampling trajectory (with increased slice resolution) was compared with standard stack-of-stars sampling with fully sampled kz (with standard slice resolution) in both non-contrast-enhanced free-breathing liver MRI and dynamic contrast-enhanced MRI (DCE-MRI) of the liver in volunteers. For both sampling trajectories, respiratory motion was extracted from the acquired radial data, and images were reconstructed using motion-compensated (respiratory-resolved or respiratory-weighted) dynamic radial compressed sensing reconstruction techniques. Qualitative image quality assessment (visual assessment by experienced radiologists) and quantitative analysis (as a metric of image sharpness) were performed to compare images acquired using the new and standard stack-of-stars sampling trajectories. Compared to standard stack-of-stars sampling, both non-contrast-enhanced and DCE liver MR images acquired with VD-stack-of-stars sampling presented improved overall image quality, sharper liver edges and increased hepatic vessel clarity in all image planes. The results have suggested that the proposed VD-stack-of-stars sampling scheme can achieve improved performance (increased slice resolution or volumetric coverage with better image quality) over standard stack-of-stars sampling in free-breathing DCE-MRI without increasing scan time. The reformatted coronal and sagittal images with better slice resolution may provide added clinical value.
PMID: 36577458
ISSN: 1873-5894
CID: 5409652

Impact of 3D printed models on quantitative surgical outcomes for patients undergoing robotic-assisted radical prostatectomy: a cohort study

Wake, Nicole; Rosenkrantz, Andrew B; Huang, Richard; Ginocchio, Luke A; Wysock, James S; Taneja, Samir S; Huang, William C; Chandarana, Hersh
BACKGROUND:Three-dimensional (3D) printed anatomic models can facilitate presurgical planning by providing surgeons with detailed knowledge of the exact location of pertinent anatomical structures. Although 3D printed anatomic models have been shown to be useful for pre-operative planning, few studies have demonstrated how these models can influence quantitative surgical metrics. OBJECTIVE:To prospectively assess whether patient-specific 3D printed prostate cancer models can improve quantitative surgical metrics in patients undergoing robotic-assisted radical prostatectomy (RARP). METHODS:Patients with MRI-visible prostate cancer (PI-RADS V2 ≥ 3) scheduled to undergo RARP were prospectively enrolled in our IRB approved study (n = 82). Quantitative surgical metrics included the rate of positive surgical margins (PSMs), operative times, and blood loss. A qualitative Likert scale survey to assess understanding of anatomy and confidence regarding surgical approach was also implemented. RESULTS:The rate of PSMs was lower for the 3D printed model group (8.11%) compared to that with imaging only (28.6%), p = 0.128. The 3D printed model group had a 9-min reduction in operating time (213 ± 42 min vs. 222 ± 47 min) and a 5 mL reduction in average blood loss (227 ± 148 mL vs. 232 ± 114 mL). Surgeon anatomical understanding and confidence improved after reviewing the 3D printed models (3.60 ± 0.74 to 4.20 ± 0.56, p = 0.62 and 3.86 ± 0.53 to 4.20 ± 0.56, p = 0.22). CONCLUSIONS:3D printed prostate cancer models can positively impact quantitative patient outcomes such as PSMs, operative times, and blood loss in patients undergoing RARP.
PMID: 36749368
ISSN: 2366-0058
CID: 5420812