Try a new search

Format these results:

Searched for:

person:chaom01

in-biosketch:yes

Total Results:

349


SorCS2 binds progranulin to regulate motor neuron development

Thomasen, Pernille Bogetofte; Salasova, Alena; Kjaer-Sorensen, Kasper; Woloszczuková, Lucie; Lavický, Josef; Login, Hande; Tranberg-Jensen, Jeppe; Almeida, Sergio; Beel, Sander; Kavková, Michaela; Qvist, Per; Kjolby, Mads; Ovesen, Peter Lund; Nolte, Stella; Vestergaard, Benedicte; Udrea, Andreea-Cornelia; Nejsum, Lene Niemann; Chao, Moses V; Van Damme, Philip; Krivanek, Jan; Dasen, Jeremy; Oxvig, Claus; Nykjaer, Anders
Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.
PMID: 37897724
ISSN: 2211-1247
CID: 5590282

Oxytocin attenuates microglial activation and restores social and non-social memory in APP/PS1 Alzheimer model mice

Selles, Maria Clara; Fortuna, Juliana T S; de Faria, Yasmin P R; Siqueira, Luciana Domett; Lima-Filho, Ricardo; Longo, Beatriz M; Froemke, Robert C; Chao, Moses V; Ferreira, Sergio T
Alzheimer's disease (AD) is characterized by neurodegeneration, memory loss, and social withdrawal. Brain inflammation has emerged as a key pathogenic mechanism in AD. We hypothesized that oxytocin, a pro-social hypothalamic neuropeptide with anti-inflammatory properties, could have therapeutic actions in AD. Here, we investigated oxytocin expression in experimental models of AD, and evaluated the therapeutic potential of treatment with oxytocin. Amyloid-β peptide oligomers (AβOs) reduced oxytocin expression in vitro and in vivo, and treatment with oxytocin prevented microglial activation induced by AβOs in purified microglial cultures. Treatment of aged APP/PS1 mice, a mouse model of AD, with intranasal oxytocin attenuated microglial activation and favored deposition of Aβ in dense core plaques, a potentially neuroprotective mechanism. Remarkably, treatment with oxytocin alleviated social and non-social memory impairments in aged APP/PS1 mice. Our findings point to oxytocin as a potential therapeutic target to reduce brain inflammation and correct memory deficits in AD.
PMCID:10148027
PMID: 37128547
ISSN: 2589-0042
CID: 5544812

Confronting the loss of trophic support

Hu, Hui-Lan; Khatri, Latika; Santacruz, Marilyn; Church, Emily; Moore, Christopher; Huang, Tony T; Chao, Moses V
Classic experiments with peripheral sympathetic neurons established an absolute dependence upon NGF for survival. A forgotten problem is how these neurons become resistant to deprivation of trophic factors. The question is whether and how neurons can survive in the absence of trophic support. However, the mechanism is not understood how neurons switch their phenotype to lose their dependence on trophic factors, such as NGF and BDNF. Here, we approach the problem by considering the requirements for trophic support of peripheral sympathetic neurons and hippocampal neurons from the central nervous system. We developed cellular assays to assess trophic factor dependency for sympathetic and hippocampal neurons and identified factors that rescue neurons in the absence of trophic support. They include enhanced expression of a subunit of the NGF receptor (Neurotrophin Receptor Homolog, NRH) in sympathetic neurons and an increase of the expression of the glucocorticoid receptor in hippocampal neurons. The results are significant since levels and activity of trophic factors are responsible for many neuropsychiatric conditions. Resistance of neurons to trophic factor deprivation may be relevant to the underlying basis of longevity, as well as an important element in preventing neurodegeneration.
PMCID:10338843
PMID: 37456526
ISSN: 1662-5099
CID: 5535402

Music Upper Limb Therapy-Integrated (MULT-I) Provides a Feasible Enriched Environment and Reduces Post Stroke Depression: A Pilot Randomized Controlled Trial

Palumbo, Anna; Aluru, Viswanath; Battaglia, Jessica; Geller, Daniel; Turry, Alan; Ross, Marc; Cristian, Adrian; Balagula, Caitlin; Ogedegbe, Gbenga; Khatri, Latika; Chao, Moses V; Froemke, Robert C; Urbanek, Jacek K; Raghavan, Preeti
OBJECTIVE:This study aims to refine Music Upper Limb Therapy - Integrated (MULT-I) to create a feasible enriched environment for stroke rehabilitation and compare its biological and behavioral effects to that of a home exercise program (HEP). DESIGN/METHODS:Randomized mixed-methods study of 30 adults with post-stroke hemiparesis. Serum brain derived neurotrophic factor (BDNF) and oxytocin levels measured biologic effects, and upper limb function, disability, quality of life and emotional well-being were assessed as behavioral outcomes. Participant experiences were explored using semi-structured interviews. RESULTS:MULT-I participants showed reduced depression from pre- to post- intervention as compared to HEP participants. BDNF levels significantly increased for MULT-I participants, but decreased for HEP participants, with a significant difference between groups after excluding those with post-stroke depression. MULT-I participants additionally improved quality of life and self-perceived physical strength, mobility, activity, participation, and recovery from pre- to post-intervention. HEP participants improved upper limb function. Qualitatively, MULT-I provided psychosocial support and enjoyment while HEP supported self-management of rehabilitation. CONCLUSIONS:Implementation of a music enriched environment is feasible, reduces post-stroke depression, and may enhance the neural environment for recovery via increases in BDNF levels. Self-management of rehabilitation through a home exercise program may further improve upper limb function.
PMID: 34864768
ISSN: 1537-7385
CID: 5080352

Voluntary Exercise Boosts Striatal Dopamine Release: Evidence for the Necessary and Sufficient Role of BDNF

Bastioli, Guendalina; Arnold, Jennifer C; Mancini, Maria; Mar, Adam C; Gamallo-Lana, Begoña; Saadipour, Khalil; Chao, Moses V; Rice, Margaret E
Physical exercise improves motor performance in individuals with Parkinson's disease and elevates mood in those with depression. Although underlying factors have not been identified, clues arise from previous studies showing a link between cognitive benefits of exercise and increases in brain-derived neurotrophic factor (BDNF). Here, we investigated the influence of voluntary wheel-running exercise on BDNF levels in the striatum of young male wild-type (WT) mice, and on the striatal release of a key motor-system transmitter, dopamine (DA). Mice were allowed unlimited access to a freely rotating wheel (runners) or a locked wheel (controls) for 30 d. Electrically evoked DA release was quantified in ex vivo corticostriatal slices from these animals using fast-scan cyclic voltammetry. We found that exercise increased BDNF levels in dorsal striatum (dStr) and increased DA release in dStr and in nucleus accumbens core and shell. Increased DA release was independent of striatal acetylcholine (ACh), and persisted after a week of rest. We tested a role for BDNF in the influence of exercise on DA release using mice that were heterozygous for BDNF deletion (BDNF+/-). In contrast to WT mice, evoked DA release did not differ between BDNF+/- runners and controls. Complementary pharmacological studies using a tropomyosin receptor kinase B (TrkB) agonist in WT mouse slices showed that TrkB receptor activation also increased evoked DA release throughout striatum in an ACh-independent manner. Together, these data support a causal role for BDNF in exercise-enhanced striatal DA release and provide mechanistic insight into the beneficial effects of exercise in neuropsychiatric disorders, including Parkinson's, depression, and anxiety.SIGNIFICANCE STATEMENT Exercise has been shown to improve movement and cognition in humans and rodents. Here, we report that voluntary exercise for 30 d leads to an increase in evoked DA release throughout the striatum and an increase in BDNF in the dorsal (motor) striatum. The increase in DA release appears to require BDNF, indicated by the absence of DA release enhancement with running in BDNF+/- mice. Activation of BDNF receptors using a pharmacological agonist was also shown to boost DA release. Together, these data support a necessary and sufficient role for BDNF in exercise-enhanced DA release and provide mechanistic insight into the reported benefits of exercise in individuals with dopamine-linked neuropsychiatric disorders, including Parkinson's disease and depression.
PMCID:9186798
PMID: 35577554
ISSN: 1529-2401
CID: 5277432

Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release

Hikima, Takuya; Witkovsky, Paul; Khatri, Latika; Chao, Moses V; Rice, Margaret E
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
PMCID:9097777
PMID: 35361702
ISSN: 1529-2401
CID: 5220042

Transactivation of TrkB Receptors by Oxytocin and Its G Protein-Coupled Receptor

Mitre, Mariela; Saadipour, Khalil; Williams, Kevin; Khatri, Latika; Froemke, Robert C; Chao, Moses V
Brain-derived Neurotrophic Factor (BDNF) binds to the TrkB tyrosine kinase receptor, which dictates the sensitivity of neurons to BDNF. A unique feature of TrkB is the ability to be activated by small molecules in a process called transactivation. Here we report that the brain neuropeptide oxytocin increases BDNF TrkB activity in primary cortical neurons and in the mammalian neocortex during postnatal development. Oxytocin produces its effects through a G protein-coupled receptor (GPCR), however, the receptor signaling events that account for its actions have not been fully defined. We find oxytocin rapidly transactivates TrkB receptors in bath application of acute brain slices of 2-week-old mice and in primary cortical culture by increasing TrkB receptor tyrosine phosphorylation. The effects of oxytocin signaling could be distinguished from the related vasopressin receptor. The transactivation of TrkB receptors by oxytocin enhances the clustering of gephyrin, a scaffold protein responsible to coordinate inhibitory responses. Because oxytocin displays pro-social functions in maternal care, cognition, and social attachment, it is currently a focus of therapeutic strategies in autism spectrum disorders. Interestingly, oxytocin and BDNF are both implicated in the pathophysiology of depression, schizophrenia, anxiety, and cognition. These results imply that oxytocin may rely upon crosstalk with BDNF signaling to facilitate its actions through receptor transactivation.
PMCID:9201241
PMID: 35721318
ISSN: 1662-5099
CID: 5281802

Single-cell transcriptomics identifies Gadd45b as a regulator of herpesvirus-reactivating neurons

Hu, Hui-Lan; Srinivas, Kalanghad P; Wang, Shuoshuo; Chao, Moses V; Lionnet, Timothee; Mohr, Ian; Wilson, Angus C; Depledge, Daniel P; Huang, Tony T
Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.
PMID: 34842321
ISSN: 1469-3178
CID: 5065412

Hippocampal metabolite concentrations in schizophrenia vary in association with rare gene variants in the TRIO gene [Letter]

Malaspina, Dolores; Gonen, Oded; Rhodes, Haley; Hoffman, Kevin W; Heguy, Adriana; Walsh-Messinger, Julie; Chao, Moses V; Kranz, Thorsten M
PMID: 33183947
ISSN: 1573-2509
CID: 4671882