Try a new search

Format these results:

Searched for:

person:cloosm01

Total Results:

51


Deep-Learning-Based Contrast Synthesis From MRF Parameter Maps in the Knee Joint

Nykänen, Olli; Nevalainen, Mika; Casula, Victor; Isosalo, Antti; Inkinen, Satu I; Nikki, Marko; Lattanzi, Riccardo; Cloos, Martijn A; Nissi, Mikko J; Nieminen, Miika T
BACKGROUND:Magnetic resonance fingerprinting (MRF) is a method to speed up acquisition of quantitative MRI data. However, MRF does not usually produce contrast-weighted images that are required by radiologists, limiting reachable total scan time improvement. Contrast synthesis from MRF could significantly decrease the imaging time. PURPOSE/OBJECTIVE:To improve clinical utility of MRF by synthesizing contrast-weighted MR images from the quantitative data provided by MRF, using U-nets that were trained for the synthesis task utilizing L1- and perceptual loss functions, and their combinations. STUDY TYPE/METHODS:Retrospective. POPULATION/METHODS:Knee joint MRI data from 184 subjects from Northern Finland 1986 Birth Cohort (ages 33-35, gender distribution not available). FIELD STRENGTH AND SEQUENCE/UNASSIGNED:A 3 T, multislice-MRF, proton density (PD)-weighted 3D-SPACE (sampling perfection with application optimized contrasts using different flip angle evolution), fat-saturated T2-weighted 3D-space, water-excited double echo steady state (DESS). ASSESSMENT/RESULTS:Data were divided into training, validation, test, and radiologist's assessment sets in the following way: 136 subjects to training, 3 for validation, 3 for testing, and 42 for radiologist's assessment. The synthetic and target images were evaluated using 5-point Likert scale by two musculoskeletal radiologists blinded and with quantitative error metrics. STATISTICAL TESTS/METHODS:Friedman's test accompanied with post hoc Wilcoxon signed-rank test and intraclass correlation coefficient. The statistical cutoff P <0.05 adjusted by Bonferroni correction as necessary was utilized. RESULTS:The networks trained in the study could synthesize conventional images with high image quality (Likert scores 3-4 on a 5-point scale). Qualitatively, the best synthetic images were produced with combination of L1- and perceptual loss functions and perceptual loss alone, while L1-loss alone led to significantly poorer image quality (Likert scores below 3). The interreader and intrareader agreement were high (0.80 and 0.92, respectively) and significant. However, quantitative image quality metrics indicated best performance for the pure L1-loss. DATA CONCLUSION/CONCLUSIONS:Synthesizing high-quality contrast-weighted images from MRF data using deep learning is feasible. However, more studies are needed to validate the diagnostic accuracy of these synthetic images. EVIDENCE LEVEL/METHODS:4. TECHNICAL EFFICACY/UNASSIGNED:Stage 1.
PMID: 36562500
ISSN: 1522-2586
CID: 5409352

Age-Dependent Changes in Knee Cartilage T1 , T2 , and T1p Simultaneously Measured Using MRI Fingerprinting

Kijowski, Richard; Sharafi, Azadeh; Zibetti, Marcelo V W; Chang, Gregory; Cloos, Martijn A; Regatte, Ravinder R
BACKGROUND:Magnetic resonance fingerprinting (MRF) techniques have been recently described for simultaneous multiparameter cartilage mapping of the knee although investigation of their ability to detect early cartilage degeneration remains limited. PURPOSE/OBJECTIVE:relaxation times measured using a three-dimensional (3D) MRF sequence in healthy volunteers. STUDY TYPE/METHODS:Prospective. SUBJECTS/METHODS:The study group consisted of 24 healthy asymptomatic human volunteers (15 males with mean age 34.9 ± 14.4 years and 9 females with mean age 44.5 ± 13.1 years). FIELD STRENGTH/SEQUENCE/UNASSIGNED:maps of knee cartilage. ASSESSMENT/RESULTS:relaxation times of the knee were measured. STATISTICAL TESTS/METHODS:relaxation times. The value of P < 0.05 was considered statistically significant. RESULTS: = 0.54-0.66). CONCLUSION/CONCLUSIONS:relaxation times simultaneously measured using a 3D-MRF sequence in healthy volunteers showed age-dependent changes in knee cartilage, primarily within the medial compartment.
PMID: 36190187
ISSN: 1522-2586
CID: 5361572

Editorial for "Synthetic MRI With MR-STAT: Results From a Clinical Trial" [Editorial]

Cloos, Martijn A; Shepherd, Timothy M
PMID: 36326570
ISSN: 1522-2586
CID: 5358702

Super-resolution of sodium images from simultaneous 1 H MRF/23 Na MRI acquisition

Rodriguez, Gonzalo G; Yu, Zidan; Shaykevich, Sarah; O'Donnell, Lauren F; Aguilera, Liz; Cloos, Martijn A; Madelin, Guillaume
In this work, we introduce a super-resolution method that generates a high-resolution (HR) sodium (23 Na) image from simultaneously acquired low-resolution (LR) 23 Na density-weighted MRI and HR proton density, T1 , and T2 maps from proton (1 H) MR fingerprinting in the brain at 7 T. The core of our method is a partial least squares regression between the HR (1 H) images and the LR (23 Na) image. An iterative loop and deconvolution with the point spread function of each acquired image were included in the algorithm to generate a final HR 23 Na image without losing features from the LR 23 Na image. The method was applied to simultaneously acquired HR proton and LR sodium data with in-plane resolution ratios between sodium and proton data of 3.8 and 1.9 and the same slice thickness. Four volunteers were scanned to evaluate the method's performance. For the data with a resolution ratio of 3.8, the mean absolute difference between the generated and ground truth HR 23 Na images was in the range of 1.5%-7.2% of the ground truth with a multiscale structural similarity index (M-SSIM) of 0.93 ± 0.03. For the data with a resolution ratio of 1.9, the mean absolute difference was in the range of 4.8%-6.3% with an M-SSIM of 0.95 ± 0.01.
PMID: 37186038
ISSN: 1099-1492
CID: 5503482

Repeatability of simultaneous 3D 1H MRF/23Na MRI in brain at 7 T

Rodriguez, Gonzalo G; Yu, Zidan; O Donnell, Lauren F; Calderon, Liz; Cloos, Martijn A; Madelin, Guillaume
Proton MRI can provide detailed morphological images, but it reveals little information about cell homeostasis. On the other hand, sodium MRI can provide metabolic information but cannot resolve fine structures. The complementary nature of proton and sodium MRI raises the prospect of their combined use in a single experiment. In this work, we assessed the repeatability of normalized proton density (PD), T1, T2, and normalized sodium density-weighted quantification measured with simultaneous 3D 1H MRF/23Na MRI in the brain at 7 T, from ten healthy volunteers who were scanned three times each. The coefficients of variation (CV) and the intra-class correlation (ICC) were calculated for the mean and standard deviation (SD) of these 4 parameters in grey matter, white matter, and cerebrospinal fluid. As result, the CVs were lower than 3.3% for the mean values and lower than 6.9% for the SD values. The ICCs were higher than 0.61 in all 24 measurements. We conclude that the measurements of normalized PD, T1, T2, and normalized sodium density-weighted from simultaneous 3D 1H MRF/23Na MRI in the brain at 7 T showed high repeatability. We estimate that changes > 6.6% (> 2 CVs) in mean values of both 1H and 23Na metrics could be detectable with this method.
PMID: 35986071
ISSN: 2045-2322
CID: 5300402

3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1ρ volumetric mapping of human articular cartilage at 3 T

Sharafi, Azadeh; Zibetti, Marcelo V W; Chang, Gregory; Cloos, Martijn; Regatte, Ravinder R
Quantitative MRI can detect early biochemical changes in cartilage; however, the conventional techniques only measure one parameter (e.g., T1 , T2 , and T1ρ ) at a time while also being comparatively slow. We implemented a 3D magnetic resonance fingerprinting (3D-MRF) technique for simultaneous, volumetric mapping of T1 , T2 , and T1ρ in knee articular cartilage in under 9 min. It is evaluated on 11 healthy volunteers (mean age: 53 ± 9 years), five mild knee osteoarthritis (OA) patients (Kellgren-Lawrence (KL) score: 2, mean age: 60 ± 4 years), and the National Institute of Standards and Technology (NIST)/International Society for Magnetic Resonance in Medicine (ISMRM) system phantom. Proton density image, and T1 , T2, T1ρ relaxation times, and B1 + were estimated in the NIST/ISMRM system phantom as well as in the human knee medial and lateral femur, medial and lateral tibia, and patellar cartilage. The repeatability and reproducibility of the proposed technique were assessed in the phantom using analysis of the Bland-Altman plots. The intrasubject repeatability was assessed with the coefficient of variation (CV) and root mean square CV (rmsCV). The Mann-Whitney U test was used to assess the difference between healthy subjects and mild knee OA patients. The Bland-Altman plots in the NIST/ISMRM phantom demonstrated an average difference of 0.001% ± 015%, 1.2% ± 7.1%, and 0.47% ± 3% between two scans from the same 3-T scanner (repeatability), and 0.002% ± 015%, 0.62% ± 10.5%, and 0.97% ± 14% between the scans acquired on two different 3-T scanners (reproducibility) for T1 , T2 , and T1ρ , respectively. The in vivo knee study showed excellent repeatability with rmsCV less than 1%, 2%, and 1% for T1 , T2 , and T1ρ , respectively. T1ρ relaxation time in the mild knee OA patients was significantly higher (p < 0.05) than in healthy subjects. The proposed 3D-MRF sequence is fast, reproducible, robust to B1 + inhomogeneity, and can simultaneously measure the T1 , T2 , T1ρ , and B1 + volumetric maps of the knee joint in a single scan within a clinically feasible scan time.
PMID: 35815660
ISSN: 1099-1492
CID: 5279812

Simultaneous 3D acquisition of 1 H MRF and 23 Na MRI

Yu, Zidan; Hodono, Shota; Dergachyova, Olga; Hilbert, Tom; Wang, Bili; Zhang, Bei; Brown, Ryan; Sodickson, Daniel K; Madelin, Guillaume; Cloos, Martijn A
PURPOSE/OBJECTIVE:, and proton density) and sodium density weighted images over the whole brain. METHODS:were evaluated in phantoms. Finally, in vivo application of the method was demonstrated in five healthy subjects. RESULTS:values measured using our method were lower than the results measured by other conventional techniques. CONCLUSIONS:
PMID: 34971454
ISSN: 1522-2594
CID: 5108342

Twenty-four-channel high-impedance glove array for hand and wrist MRI at 3T

Zhang, Bei; Wang, Bili; Ho, Justin; Hodono, Shota; Burke, Christopher; Lattanzi, Riccardo; Vester, Markus; Rehner, Robert; Sodickson, Daniel; Brown, Ryan; Cloos, Martijn
PURPOSE/OBJECTIVE:To present a novel 3T 24-channel glove array that enables hand and wrist imaging in varying postures. METHODS:The glove array consists of an inner glove holding the electronics and an outer glove protecting the components. The inner glove consists of four main structures: palm, fingers, wrist, and a flap that rolls over on top. Each structure was constructed out of three layers: a layer of electrostatic discharge flame-resistant fabric, a layer of scuba neoprene, and a layer of mesh fabric. Lightweight and flexible high impedance coil (HIC) elements were inserted into dedicated tubes sewn into the fabric. Coil elements were deliberately shortened to minimize the matching interface. Siemens Tim 4G technology was used to connect all 24 HIC elements to the scanner with only one plug. RESULTS:The 24-channel glove array allows large motion of both wrist and hand while maintaining the SNR needed for high-resolution imaging. CONCLUSION/CONCLUSIONS:In this work, a purpose-built 3T glove array that embeds 24 HIC elements is demonstrated for both hand and wrist imaging. The 24-channel glove array allows a great range of motion of both the wrist and hand while maintaining a high SNR and providing good theoretical acceleration performance, thus enabling hand and wrist imaging at different postures to extract kinematic information.
PMID: 34971464
ISSN: 1522-2594
CID: 5108352

T1 and T2 quantification using magnetic resonance fingerprinting in mild traumatic brain injury

Gerhalter, Teresa; Cloos, Martijn; Chen, Anna M; Dehkharghani, Seena; Peralta, Rosemary; Babb, James S; Zarate, Alejandro; Bushnik, Tamara; Silver, Jonathan M; Im, Brian S; Wall, Stephen; Baete, Steven; Madelin, Guillaume; Kirov, Ivan I
OBJECTIVES/OBJECTIVE:To assess whether MR fingerprinting (MRF)-based relaxation properties exhibit cross-sectional and prospective correlations with patient outcome and compare the results with those from DTI. METHODS:from MRF were compared in 12 gray and white matter regions with Mann-Whitney tests. Bivariate associations between MR measures and outcome were assessed using the Spearman correlation and logistic regression. RESULTS:, accounted for five of the six MR measures with the highest utility for identification of non-recovered patients at timepoint 2 (AUC > 0.80). CONCLUSION/CONCLUSIONS:, FA, and ADC for predicting 3-month outcome after mTBI. KEY POINTS/CONCLUSIONS:, and FA.
PMID: 34410458
ISSN: 1432-1084
CID: 5006382

Simultaneous bilateral T1 , T2 , and T1ρ relaxation mapping of the hip joint with magnetic resonance fingerprinting

Sharafi, Azadeh; Zibetti, Marcelo V W; Chang, Gregory; Cloos, Martijn A; Regatte, Ravinder R
Quantitative MRI can detect early biochemical changes in cartilage, but its bilateral use in clinical routines is challenging. The aim of this prospective study was to demonstrate the feasibility of magnetic resonance fingerprinting for bilateral simultaneous T1 , T2 , and T1ρ mapping of the hip joint. The study population consisted of six healthy volunteers with no known trauma or pain in the hip. Monoexponential T1 , T2 , and T1ρ relaxation components were assessed in femoral lateral, superolateral, and superomedial, and inferior, as well as acetabular, superolateral, and superomedial subregions in left and right hip cartilage. Aligned ranked nonparametric factorial analysis was used to assess the side's impact on the subregions. Kruskal-Wallis and Wilcoxon tests were used to compare subregions, and coefficient of variation to assess repeatability. Global averages of T1 (676.0 ± 45.4 and 687.6 ± 44.5 ms), T2 (22.5 ± 2.6 and 22.1 ± 2.5 ms), and T1ρ (38.2 ± 5.5 and 38.2 ± 5.5 ms) were measured in the left and right hip, and articular cartilage, respectively. The Kruskal-Wallis test showed a significant difference between different subregions' relaxation times regardless of the hip side (p < 0.001 for T1 , p = 0.012 for T2 , and p < 0.001 for T1ρ ). The Wilcoxon test showed that T1 of femoral layers was significantly (p < 0.003) higher than that for acetabular cartilage. The experiments showed excellent repeatability with CVrms of 1%, 2%, and 4% for T1 , T2 , and T1ρ, respectively. It was concluded that bilateral T1 , T2 , and T1ρ relaxation times, as well as B1 + maps, can be acquired simultaneously from hip joints using the proposed MRF sequence.
PMID: 34825750
ISSN: 1099-1492
CID: 5063862