Try a new search

Format these results:

Searched for:

person:davidg04

in-biosketch:yes

Total Results:

63


Chromatin accessibility and cell cycle progression are controlled by the HDAC-associated Sin3B protein in murine hematopoietic stem cells

Calderon, Alexander; Mestvirishvili, Tamara; Boccalatte, Francesco; Ruggles, Kelly V; David, Gregory
BACKGROUND:Blood homeostasis requires the daily production of millions of terminally differentiated effector cells that all originate from hematopoietic stem cells (HSCs). HSCs are rare and exhibit unique self-renewal and multipotent properties, which depend on their ability to maintain quiescence through ill-defined processes. Defective control of cell cycle progression can eventually lead to bone marrow failure or malignancy. In particular, the molecular mechanisms tying cell cycle re-entry to cell fate commitment in HSCs remain elusive. Previous studies have identified chromatin coordination as a key regulator of differentiation in embryonic stem cells. RESULTS:phase of the cell cycle, which correlates with the engagement of specific signaling pathways, including aberrant expression of cell adhesion molecules and the interferon signaling program in LT-HSCs. In addition, we uncover the Sin3B-dependent accessibility of genomic elements controlling HSC differentiation, which points to cell cycle progression possibly dictating the priming of HSCs for differentiation. CONCLUSIONS:Our findings provide new insights into controlled cell cycle progression as a potential regulator of HSC lineage commitment through the modulation of chromatin features.
PMCID:10804615
PMID: 38254205
ISSN: 1756-8935
CID: 5624732

The Sin3B chromatin modifier restricts cell cycle progression to dictate hematopoietic stem cell differentiation

Calderon, Alexander; Mestvirishvili, Tamara; Boccalatte, Francesco; Ruggles, Kelly; David, Gregory
To maintain blood homeostasis, millions of terminally differentiated effector cells are produced every day. At the apex of this massive and constant blood production lie hematopoietic stem cells (HSCs), a rare cell type harboring unique self-renewal and multipotent properties. A key feature of HSCs is their ability to temporarily exit the cell cycle in a state termed quiescence. Defective control of cell cycle progression can eventually lead to bone marrow failure or malignant transformation. Recent work in embryonic stem cells has suggested that cells can more robustly respond to differentiation cues in the early phases of the cell cycle, owing to a discrete chromatin state permissive to cell fate commitment. However, the molecular mechanisms tying cell cycle re-entry to cell fate commitment in adult stem cells such as HSCs remain elusive. Here, we report that the chromatin-associated Sin3B protein is necessary for HSCs' commitment to differentiation, but dispensable for their self-renewal or survival. Transcriptional profiling of hematopoietic stem and progenitor cells (HSPCs) genetically inactivated for Sin3B at the single cell level reveals aberrant cell cycle gene expression, correlating with the defective engagement of discrete signaling programs. In particular, the loss of Sin3B in the hematopoietic compartment results in aberrant expression of cell adhesion molecules and essential components of the interferon signaling cascade in LT-HSCs. Finally, chromatin accessibility profiling in LT-HSCs suggests a link between Sin3B-dependent cell cycle progression and priming of hematopoietic stem cells for differentiation. Together, these results point to controlled progression through the G1 phase of the cell cycle as a likely regulator of HSC lineage commitment through the modulation of chromatin features.
PMCID:9900761
PMID: 36747851
CID: 5602942

Therapy-induced senescence promotes breast cancer cells plasticity by inducing Lipocalin-2 expression

Morales-Valencia, Jorge; Lau, Lena; Martí-Nin, Teresa; Ozerdem, Ugur; David, Gregory
The acquisition of novel detrimental cellular properties following exposure to cytotoxic drugs leads to aggressive and metastatic tumors that often translates into an incurable disease. While the bulk of the primary tumor is eliminated upon exposure to chemotherapeutic treatment, residual cancer cells and non-transformed cells within the host can engage a stable cell cycle exit program named senescence. Senescent cells secrete a distinct set of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). Upon exposure to the SASP, cancer cells undergo cellular plasticity resulting in increased proliferation, migration and epithelial-to-mesenchymal transition. The molecular mechanisms by which the SASP regulates these pro-tumorigenic features are poorly understood. Here, we report that breast cancer cells exposed to the SASP strongly upregulate Lipocalin-2 (LCN2). Furthermore, we demonstrate that LCN2 is critical for SASP-induced increased migration in breast cancer cells, and its inactivation potentiates the response to chemotherapeutic treatment in mouse models of breast cancer. Finally, we show that neoadjuvant chemotherapy treatment leads to LCN2 upregulation in residual human breast tumors, and correlates with worse overall survival. These findings provide the foundation for targeting LCN2 as an adjuvant therapeutic approach to prevent the emergence of aggressive tumors following chemotherapy.
PMID: 35953598
ISSN: 1476-5594
CID: 5287202

The origins of cancer cell dormancy

Morales-Valencia, Jorge; David, Gregory
Cancer cell dormancy has emerged as an important nongenetic driver of drug resistance. Dormant cells are characterized by a reversible cell cycle exit. They represent a reservoir for eventual cancer relapse, and upon reactivation, can fuel metastatic disease. Although dormant cells were originally believed to emerge from a drug-resistant pre-existing cancer subpopulation, this notion has been recently challenged. Here, we review recent evidence indicating that dormancy represents an adaptive strategy employed by cancer cells to avoid the cytotoxic effects of antitumor therapy. Furthermore, we outline the molecular pathways engaged by cancer cells to enter dormancy upon drug exposure, with a focus on cellular senescence as a driver of dormancy.
PMID: 35500379
ISSN: 1879-0380
CID: 5215962

Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension

Bisserier, Malik; Mathiyalagan, Prabhu; Zhang, Shihong; Elmastour, Firas; Dorfmüller, Peter; Humbert, Marc; David, Gregory; Tarzami, Sima; Weber, Thomas; Perros, Frederic; Sassi, Yassine; Sahoo, Susmita; Hadri, Lahouaria
BACKGROUND:Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS:We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS:SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS:All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.
PMCID:8293289
PMID: 34078089
ISSN: 1524-4539
CID: 4964772

Breaking Tradition to Bridge Bench and Bedside: Accelerating the MD-PhD-Residency Pathway

Modrek, Aram S; Tanese, Naoko; Placantonakis, Dimitris G; Sulman, Erik P; Rivera, Rafael; Du, Kevin L; Gerber, Naamit K; David, Gregory; Chesler, Mitchell; Philips, Mark R; Cangiarella, Joan
PROBLEM/OBJECTIVE:Physician-scientists are individuals trained in both clinical practice and scientific research. Often, the goal of physician-scientist training is to address pressing questions in biomedical research. The established pathways to formally train such individuals are, mainly, MD-PhD programs and physician-scientist track residencies. Although graduates of these pathways are well equipped to be physician-scientists, numerous factors, including funding and length of training, discourage application to such programs and impede success rates. APPROACH/METHODS:To address some of the pressing challenges in training and retaining burgeoning physician-scientists, New York University Grossman School of Medicine formed the Accelerated MD-PhD-Residency Pathway in 2016. This pathway builds on the previously established accelerated three-year MD pathway to residency at the same institution. The Accelerated MD-PhD-Residency Pathway conditionally accepts MD-PhD trainees to a residency position at the same institution through the National Resident Matching Program. OUTCOMES/RESULTS:Since its inception, 2 students have joined the Accelerated MD-PhD-Residency Pathway, which provides protected research time in their chosen residency. The pathway reduces the time to earn an MD and PhD by one year and reduces the MD training phase to three years, reducing the cost and lowering socioeconomic barriers. Remaining at the same institution for residency allows for the growth of strong research collaborations and mentoring opportunities, which foster success. NEXT STEPS/UNASSIGNED:The authors and institutional leaders plan to increase the number of trainees that are accepted into the Accelerated MD-PhD-Residency Pathway and track the success of these students through residency and into practice to determine if the pathway is meeting its goal of increasing the number of practicing physician-scientists. The authors hope this model can serve as an example to leaders at other institutions who may wish to adopt this pathway for the training of their MD-PhD students.
PMID: 33464738
ISSN: 1938-808x
CID: 4760452

Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis

Yao, Changfu; Guan, Xiangrong; Carraro, Gianni; Parimon, Tanyalak; Liu, Xue; Huang, Guanling; Mulay, Apoorva; Soukiasian, Harmik J; David, Gregory; Weigt, Stephen S; Belperio, John A; Chen, Peter; Jiang, Dianhua; Noble, Paul W; Stripp, Barry R
Rationale: Idiopathic pulmonary fibrosis (IPF) is an insidious and fatal interstitial lung disease associated with declining pulmonary function. Accelerated aging, loss of epithelial progenitor cell function and/or numbers, and cellular senescence are implicated in the pathogenies of IPF.Objectives: We sought to investigate the role of alveolar type 2 (AT2) cellular senescence in initiation and/or progression of pulmonary fibrosis and therapeutic potential of targeting senescence-related pathways and senescent cells.Methods: Epithelial cells of 9 control donor proximal and distal lung tissues and 11 IPF fibrotic lung tissues were profiled by single-cell RNA sequencing to assesses the contribution of epithelial cells to the senescent cell fraction for IPF. A novel mouse model of conditional AT2 cell senescence was generated to study the role of cellular senescence in pulmonary fibrosis.Measurements and Main Results: We show that AT2 cells isolated from IPF lung tissue exhibit characteristic transcriptomic features of cellular senescence. We used conditional loss of Sin3a in adult mouse AT2 cells to initiate a program of p53-dependent cellular senescence, AT2 cell depletion, and spontaneous, progressive pulmonary fibrosis. We establish that senescence rather than loss of AT2 cells promotes progressive fibrosis and show that either genetic or pharmacologic interventions targeting p53 activation or senescence block fibrogenesis.Conclusions: Senescence of AT2 cells is sufficient to drive progressive pulmonary fibrosis. Early attenuation of senescence-related pathways and elimination of senescent cells are promising therapeutic approaches to prevent pulmonary fibrosis.
PMID: 32991815
ISSN: 1535-4970
CID: 4828542

Softly but surely: A new perspective on transcriptional repression [Editorial]

Plessel, Rebecca L; David, Gregory
PMID: 33410192
ISSN: 1521-1878
CID: 4739672

The Contribution of Physiological and Accelerated Aging to Cancer Progression Through Senescence-Induced Inflammation

Morales-Valencia, Jorge; David, Gregory
Senescent cells are found to accumulate in aged individuals, as well as in cancer patients that receive chemotherapeutic treatment. Although originally believed to halt cancer progression due to their characteristic growth arrest, senescent cells remain metabolically active and secrete a combination of inflammatory agents, growth factors and proteases, collectively known as the senescence-associated secretory phenotype (SASP). In this review, we discuss the contribution of senescent cells to cancer progression through their ability to alter cancer cells' properties and to generate a microenvironment that promotes tumor growth. Furthermore, recent evidence suggests that senescent cells are able resume proliferation and drive cancer relapse, pointing to the use of senolytics and SASP modulators as a potential approach to prevent tumor resurgence following treatment cessation. Thus, a better understanding of the hallmarks of senescence and the impact of the SASP will allow the development of improved targeted therapeutic strategies to leverage vulnerabilities associated with this cellular state.
PMCID:8490756
PMID: 34621683
ISSN: 2234-943x
CID: 5067782

Pro- and Anti-Tumorigenic Functions of the Senescence-Associated Secretory Phenotype

Lau, Lena; David, Gregory
INTRODUCTION/BACKGROUND:Cellular senescence is a stable form of cell-cycle exit. Though they no longer divide, senescent cells remain metabolically active and secrete a plethora of proteins collectively termed the senescence-associated secretory phenotype (SASP). Although senescence-associated cell-cycle exit likely evolved as an anti-tumor mechanism, the SASP contains both anti- and pro-tumorigenic potential. Areas covered: In this review, we briefly discuss the discovery of senescent cells and its relationship to cancer and aging. We also describe the initiation and regulation of the SASP upon senescence stimulus onset. We focus on both the pro- and anti-tumorigenic properties of the SASP. Finally, we speculate on the potential benefits of therapy-induced senescence combined with selective SASP inhibition for the treatment of cancer. Expert opinion: Further identification and characterization of the SASP factors that are pro-tumorigenic and those that are anti-tumorigenic in specific contexts will be crucial in order to develop personalized therapeutics for the successful treatment of cancer.
PMID: 30616404
ISSN: 1744-7631
CID: 3579812