Try a new search

Format these results:

Searched for:

person:ehrlib03

in-biosketch:yes

Total Results:

104


Location, location, and activation of a channel by calcium

Kuo, Ivana Y; Ehrlich, Barbara E
PMCID:9618095
PMID: 36215521
ISSN: 1091-6490
CID: 5351932

Boosting ER-mitochondria calcium transfer to treat Wolfram syndrome

Fischer, Tom T; Nguyen, Lien D; Ehrlich, Barbara E
Wolfram syndrome is a rare genetic disorder characterized by endocrine dysfunction and progressive neurodegeneration. By targeting intracellular calcium dysregulations, a sigma-1 receptor agonist rescued neurological deficits in preclinical models of Wolfram syndrome.
PMID: 35366518
ISSN: 1532-1991
CID: 5206132

Functional Interaction Between TRPV4 And NCS1 and the Effects of Paclitaxel

Sanchez, Julio C; Ehrlich, Barbara E
Neuronal calcium sensor 1 (NCS1), a calcium-binding protein, and transient receptor potential V4 (TRPV4), a plasma membrane calcium channel, are fundamental in the regulation of calcium homeostasis. The interactions of these proteins and their regulation by paclitaxel (PTX) were investigated using biochemical, pharmacological, and electrophysiological approaches in both a breast cancer epithelial cell model and a neuronal model. TRPV4 and NCS1 reciprocally immunoprecipitated each other, suggesting that they comprise a signaling complex. The functional consequence of this physical association was that TRPV4 currents increased with increased NCS1 expression. Calcium fluxes through TRPV4 correlated with the magnitude of TRPV4 currents and these calcium fluxes depended on NCS1 expression levels. Exposure to PTX amplified the acute effects of TRPV4 expression, currents, and calcium fluxes, but decreased the expression of NCS1. These findings augment the understanding of the properties of TRPV4, the role of NCS1 in the regulation of TRPV4, and the cellular mechanisms of PTX-induced neuropathy. Significance StatementTRPV4 and NCS1 physically and functionally interact. Increased expression of NCS1 enhances TRPV4 dependent currents, which are further amplified by treatment with the chemotherapeutic drug, paclitaxel, an effect associated with adverse effects of chemotherapy, including neuropathy.
PMID: 34321341
ISSN: 1521-0111
CID: 4953732

Pharmacological rescue of cognitive function in a mouse model of chemobrain

Nguyen, Lien D; Fischer, Tom T; Ehrlich, Barbara E
BACKGROUND:After chemotherapy, many cancer survivors suffer from long-lasting cognitive impairment, colloquially known as "chemobrain." However, the trajectories of cognitive changes and the underlying mechanisms remain unclear. We previously established paclitaxel-induced inositol trisphosphate receptor (InsP3R)-dependent calcium oscillations as a mechanism for peripheral neuropathy, which was prevented by lithium pretreatment. Here, we investigated if a similar mechanism also underlay paclitaxel-induced chemobrain. METHOD/METHODS:Mice were injected with 4 doses of 20 mg/kg paclitaxel every other day to induced cognitive impairment. Memory acquisition was assessed with the displaced object recognition test. The morphology of neurons in the prefrontal cortex and the hippocampus was analyzed using Golgi-Cox staining, followed by Sholl analyses. Changes in protein expression were measured by Western blot. RESULTS:Mice receiving paclitaxel showed impaired short-term spatial memory acquisition both acutely 5 days post injection and chronically 23 days post injection. Dendritic length and complexity were reduced in the hippocampus and the prefrontal cortex after paclitaxel injection. Concurrently, the expression of protein kinase C α (PKCα), an effector in the InsP3R pathway, was increased. Treatment with lithium before or shortly after paclitaxel injection rescued the behavioral, cellular, and molecular deficits observed. Similarly, memory and morphological deficits could be rescued by pretreatment with chelerythrine, a PKC inhibitor. CONCLUSION/CONCLUSIONS:We establish the InsP3R calcium pathway and impaired neuronal morphology as mechanisms for paclitaxel-induced cognitive impairment. Our findings suggest lithium and PKC inhibitors as candidate agents for preventing chemotherapy-induced cognitive impairment.
PMCID:8235868
PMID: 34174909
ISSN: 1750-1326
CID: 4953722

BOK controls apoptosis by Ca2+ transfer through ER-mitochondrial contact sites

Carpio, Marcos A; Means, Robert E; Brill, Allison L; Sainz, Alva; Ehrlich, Barbara E; Katz, Samuel G
Calcium transfer from the endoplasmic reticulum (ER) to mitochondria is a critical contributor to apoptosis. B cell lymphoma 2 (BCL-2) ovarian killer (BOK) localizes to the ER and binds the inositol 1,4,5-trisphosophate receptor (IP3R). Here, we show that BOK is necessary for baseline mitochondrial calcium levels and stimulus-induced calcium transfer from the ER to the mitochondria. Murine embryonic fibroblasts deficient for BOK have decreased proximity of the ER to the mitochondria and altered protein composition of mitochondria-associated membranes (MAMs), which form essential calcium microdomains. Rescue of the ER-mitochondrial juxtaposition with drug-inducible interorganelle linkers reveals a kinetic disruption, which when overcome in Bok-/- cells is still insufficient to rescue thapsigargin-induced calcium transfer and apoptosis. Likewise, a BOK mutant unable to interact with IP3R restores ER-mitochondrial proximity, but not ER-mitochondrial calcium transfer, MAM protein composition, or apoptosis. This work identifies the dynamic coordination of ER-mitochondrial contact by BOK as an important control point for apoptosis.
PMCID:7995216
PMID: 33691099
ISSN: 2211-1247
CID: 4953702

Comprehensive somatosensory and neurological phenotyping of NCS1 knockout mice

Nguyen, Lien D; Nolte, Luca G; Tan, Winston J T; Giuvelis, Denise; Santos-Sacchi, Joseph; Bilsky, Edward; Ehrlich, Barbara E
Neuronal calcium sensor 1 (NCS1) regulates a wide range of cellular functions throughout the mammalian nervous systems. Altered NCS1 expression is associated with neurodevelopmental and neurodegenerative diseases. Previous studies focused on affective and cognitive behaviors in NCS1 knockout (KO) mice, but little is known about the physiological and pathological states associated with the loss of NCS1 in the peripheral nervous system. We previously reported that NCS1 expression was reduced following paclitaxel-induced peripheral neuropathy. Here, we comprehensively investigated the phenotypes of NCS1-KO mice through a battery of behavioral tests examining both central and peripheral nervous systems. Generally, only mild differences were observed in thermal sensation and memory acquisition between NCS1-WT and -KO male mice, but not in female mice. No differences were observed in motor performance, affective behaviors, and hearing in both sexes. These results suggest that NCS1 plays a modulatory role in sensory perceptions and cognition, particularly in male mice. NCS1 has been proposed as a pharmacological target for various diseases. Therefore, the sex-specific effects of NCS1 loss may be of clinical interest. As we examined a constitutive KO model, future studies focusing on various conditional KO models will further elucidate the precise physiological significance of NCS1.
PMCID:7840744
PMID: 33504822
ISSN: 2045-2322
CID: 4953692

Cognitive Effects and Depression Associated With Taxane-Based Chemotherapy in Breast Cancer Survivors: A Meta-Analysis

Ibrahim, Eiman Y; Domenicano, Ilaria; Nyhan, Kate; Elfil, Mohamed; Mougalian, Sarah S; Cartmel, Brenda; Ehrlich, Barbara E
PMCID:8121254
PMID: 33996556
ISSN: 2234-943x
CID: 4953712

Modulating TRPV4 channels with paclitaxel and lithium

Sánchez, Julio C; Muñoz, Laura V; Ehrlich, Barbara E
Transient receptor potential V4 (TRPV4), a plasma membrane calcium channel, is implicated as a contributor to the initiation of chemotherapy-induced peripheral neuropathy (CIPN). Paclitaxel (PTX) is a commonly used anticancer drug that causes CIPN and lithium has been shown to prevent CIPN. However, the direct effect of PTX and lithium on TRPV4 is not clear. This study investigated these actions using biochemical, pharmacological, and electrophysiological approaches using a neuronal cell line (SH-SY5Y). The addition of pharmacologically appropriate levels of PTX increased the expression of TRPV4, TRPV4 currents, and TRPV4-dependent calcium fluxes. Prolonged exposure to PTX amplified the acute effects of TRPV4 expression, currents, and calcium fluxes. Pretreatment with lithium (1 mM) decreased TRPV4 currents and calcium fluxes in the absence and presence of PTX. These findings enhance our understanding of the properties and regulation of TRPV4, the cellular mechanisms of PTX-induced neuropathy, and the mechanism of lithium for prevention of CIPN.
PMID: 32871457
ISSN: 1532-1991
CID: 4953682

Wolfram Syndrome: a Monogenic Model to Study Diabetes Mellitus and Neurodegeneration

Fischer, Tom T; Ehrlich, Barbara E
Wolfram syndrome (WS) is a rare, progressive disorder characterized by childhood-onset diabetes mellitus, optic nerve atrophy, hearing loss, diabetes insipidus, and neurodegeneration. Currently, there is no effective treatment for WS, and patients typically die between 30 and 40 years of age. WS is primarily caused by autosomal recessive mutations in the Wolfram syndrome 1 (WFS1) gene (OMIM 222300), which encodes for wolframin (WFS1). This disorder is therefore a valuable monogenic model for prevalent diseases, particularly diabetes mellitus and neurodegeneration. Whereas reduced survival and secretion are known cellular impairments causing WS, the underlying molecular pathways and the physiological function of WFS1 remain incompletely described. Here, we characterize WFS1 as a regulator of intracellular calcium homeostasis, review our current understanding of the disease mechanism of WS, and discuss candidate treatment approaches. These insights will facilitate identification of new therapeutic strategies not only for WS but also for diabetes mellitus and neurodegeneration.
PMCID:7451204
PMID: 32864536
ISSN: 2468-8673
CID: 4953672

Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome

Nguyen, Lien D; Fischer, Tom T; Abreu, Damien; Arroyo, Alfredo; Urano, Fumihiko; Ehrlich, Barbara E
Wolfram syndrome is a rare multisystem disease characterized by childhood-onset diabetes mellitus and progressive neurodegeneration. Most cases are attributed to pathogenic variants in a single gene, Wolfram syndrome 1 (WFS1). There currently is no disease-modifying treatment for Wolfram syndrome, as the molecular consequences of the loss of WFS1 remain elusive. Because diabetes mellitus is the first diagnosed symptom of Wolfram syndrome, we aimed to further examine the functions of WFS1 in pancreatic β cells in the context of hyperglycemia. Knockout (KO) of WFS1 in rat insulinoma (INS1) cells impaired calcium homeostasis and protein kinase B/Akt signaling and, subsequently, decreased cell viability and glucose-stimulated insulin secretion. Targeting calcium homeostasis with reexpression of WFS1, overexpression of WFS1's interacting partner neuronal calcium sensor-1 (NCS1), or treatment with calpain inhibitor and ibudilast reversed deficits observed in WFS1-KO cells. Collectively, our findings provide insight into the disease mechanism of Wolfram syndrome and highlight new targets and drug candidates to facilitate the development of a treatment for this disorder and similar diseases.
PMID: 32632005
ISSN: 1091-6490
CID: 4517922