Try a new search

Format these results:

Searched for:

person:fossas01

in-biosketch:yes

Total Results:

42


FDA-approved carbonic anhydrase inhibitors reduce amyloid β pathology and improve cognition, by ameliorating cerebrovascular health and glial fitness

Canepa, Elisa; Parodi-Rullan, Rebecca; Vazquez-Torres, Rafael; Gamallo-Lana, Begona; Guzman-Hernandez, Roberto; Lemon, Nicole L; Angiulli, Federica; Debure, Ludovic; Ilies, Marc A; Østergaard, Leif; Wisniewski, Thomas; Gutiérrez-Jiménez, Eugenio; Mar, Adam C; Fossati, Silvia
INTRODUCTION/BACKGROUND:Cerebrovascular pathology is an early and causal hallmark of Alzheimer's disease (AD), in need of effective therapies. METHODS:Based on the success of our previous in vitro studies, we tested for the first time in a model of AD and cerebral amyloid angiopathy (CAA), the carbonic anhydrase inhibitors (CAIs) methazolamide and acetazolamide, Food and Drug Administration-approved against glaucoma and high-altitude sickness. RESULTS:Both CAIs reduced cerebral, vascular, and glial amyloid beta (Aβ) accumulation and caspase activation, diminished gliosis, and ameliorated cognition in TgSwDI mice. The CAIs also improved microvascular fitness and induced protective glial pro-clearance pathways, resulting in the reduction of Aβ deposition. Notably, we unveiled that the mitochondrial carbonic anhydrase-VB (CA-VB) is upregulated in TgSwDI brains, CAA and AD+CAA human subjects, and in endothelial cells upon Aβ treatment. Strikingly, CA-VB silencing specifically reduces Aβ-mediated endothelial apoptosis. DISCUSSION/CONCLUSIONS:This work substantiates the potential application of CAIs in clinical trials for AD and CAA.
PMID: 37186121
ISSN: 1552-5279
CID: 5544132

Screening for PTSD and TBI in Veterans using Routine Clinical Laboratory Blood Tests

Xu, Mu; Lin, Ziqiang; Siegel, Carole E; Laska, Eugene M; Abu-Amara, Duna; Genfi, Afia; Newman, Jennifer; Jeffers, Michelle K; Blessing, Esther M; Flanagan, Steven R; Fossati, Silvia; Etkin, Amit; Marmar, Charles R
Post-traumatic stress disorder (PTSD) is a mental disorder diagnosed by clinical interviews, self-report measures and neuropsychological testing. Traumatic brain injury (TBI) can have neuropsychiatric symptoms similar to PTSD. Diagnosing PTSD and TBI is challenging and more so for providers lacking specialized training facing time pressures in primary care and other general medical settings. Diagnosis relies heavily on patient self-report and patients frequently under-report or over-report their symptoms due to stigma or seeking compensation. We aimed to create objective diagnostic screening tests utilizing Clinical Laboratory Improvement Amendments (CLIA) blood tests available in most clinical settings. CLIA blood test results were ascertained in 475 male veterans with and without PTSD and TBI following warzone exposure in Iraq or Afghanistan. Using random forest (RF) methods, four classification models were derived to predict PTSD and TBI status. CLIA features were selected utilizing a stepwise forward variable selection RF procedure. The AUC, accuracy, sensitivity, and specificity were 0.730, 0.706, 0.659, and 0.715, respectively for differentiating PTSD and healthy controls (HC), 0.704, 0.677, 0.671, and 0.681 for TBI vs. HC, 0.739, 0.742, 0.635, and 0.766 for PTSD comorbid with TBI vs HC, and 0.726, 0.723, 0.636, and 0.747 for PTSD vs. TBI. Comorbid alcohol abuse, major depressive disorder, and BMI are not confounders in these RF models. Markers of glucose metabolism and inflammation are among the most significant CLIA features in our models. Routine CLIA blood tests have the potential for discriminating PTSD and TBI cases from healthy controls and from each other. These findings hold promise for the development of accessible and low-cost biomarker tests as screening measures for PTSD and TBI in primary care and specialty settings.
PMCID:9944218
PMID: 36810280
ISSN: 2158-3188
CID: 5448152

Reader Response: Blood Biomarkers of Traumatic Brain Injury and Cognitive Impairment in Older Veterans

Wisniewski, Thomas; Fossati, Silvia
PMID: 34253655
ISSN: 1526-632x
CID: 4938342

CRF serum levels differentiate PTSD from healthy controls and TBI in military veterans

Ramos-Cejudo, Jaime; Genfi, Afia; Abu-Amara, Duna; Debure, Ludovic; Qian, Meng; Laska, Eugene; Siegel, Carole; Milton, Nicholas; Newman, Jennifer; Blessing, Esther; Li, Meng; Etkin, Amit; Marmar, Charles R; Fossati, Silvia
Background and Objective/UNASSIGNED:Posttraumatic stress disorder (PTSD) is a serious and frequently debilitating psychiatric condition that can occur in people who have experienced traumatic stessors, such as war, violence, sexual assault and other life-threatening events. Treatment of PTSD and traumatic brain injury (TBI) in veterans is challenged by diagnostic complexity, partially due to PTSD and TBI symptom overlap and to the fact that subjective self-report assessments may be influenced by a patient's willingness to share their traumatic experiences and resulting symptoms. Corticotropin-releasing factor (CRF) is one of the main mediators of hypothalamic pituitary adrenal (HPA)-axis responses in stress and anxiety. Methods and Results/UNASSIGNED:We analyzed serum CRF levels in 230 participants including heathy controls (64), and individuals with PTSD (53), TBI (70) or PTSD+TBI (43) by enzyme immunoassay (EIA). Significantly lower CRF levels were found in both the PTSD and PTSD+TBI groups compared to healthy control (PTSD vs Controls: P=0.0014, PTSD + TBI vs Controls: P=0.0011) and chronic TBI participants (PTSD vs TBI: P<0.0001PTSD + TBI vs TBI: P<0.0001) , suggesting a PTSD-related mechanism independent from TBI and associated with CRF reduction. CRF levels negatively correlated with PTSD severity on the CAPS-5 scale in the whole study group. Conclusions/UNASSIGNED:Hyperactivation of the HPA axis has been classically identified in acute stress. However, the recognized enhanced feedback inhibition of the HPA axis in chronic stress supports our findings of lower CRF in PTSD patients. This study suggests that reduced serum CRF in PTSD should be further investigated. Future validation studies will establish if CRF is a possible blood biomarker for PTSD and/or for differentiating PTSD and chronic TBI symptomatology.
PMCID:8764614
PMID: 35211666
ISSN: 2575-5609
CID: 5165012

Alzheimer's amyloid β heterogeneous species differentially affect brain endothelial cell viability, blood-brain barrier integrity, and angiogenesis

Parodi-Rullán, Rebecca; Ghiso, Jorge; Cabrera, Erwin; Rostagno, Agueda; Fossati, Silvia
Impaired clearance in the Alzheimer's Disease (AD) brain is key in the formation of Aβ parenchymal plaques and cerebrovascular deposits known as cerebral amyloid angiopathy (CAA), present in >80% of AD patients and ~50% of non-AD elderly subjects. Aβ deposits are highly heterogeneous, containing multiple fragments mostly derived from catabolism of Aβ40/Aβ42, which exhibit dissimilar aggregation properties. Remarkably, the role of these physiologically relevant Aβ species in cerebrovascular injury and their impact in vascular pathology is unknown. We sought to understand how heterogeneous Aβ species affect cerebral endothelial health and assess whether their diverse effects are associated with the peptides aggregation propensities. We analyzed cerebral microvascular endothelial cell (CMEC) viability, blood-brain barrier (BBB) permeability, and angiogenesis, all relevant aspects of brain microvascular dysfunction. We found that Aβ peptides and fragments exerted differential effects on cerebrovascular pathology. Peptides forming mostly oligomeric structures induced CMEC apoptosis, whereas fibrillar aggregates increased BBB permeability without apoptotic effects. Interestingly, all Aβ species tested inhibited angiogenesis in vitro. These data link the biological effects of the heterogeneous Aβ peptides to their primary structure and aggregation, strongly suggesting that the composition of amyloid deposits influences clinical aspects of the AD vascular pathology. As the presence of predominant oligomeric structures in proximity of the vessel walls may lead to CMEC death and induction of microhemorrhages, fibrillar amyloid is likely responsible for increased BBB permeability and associated neurovascular dysfunction. These results have the potential to unveil more specific therapeutic targets and clarify the multifactorial nature of AD.
PMID: 33155752
ISSN: 1474-9726
CID: 4664452

Plasma tau predicts cerebral vulnerability in aging

Cantero, Jose L; Atienza, Mercedes; Ramos-Cejudo, Jaime; Fossati, Silvia; Wisniewski, Thomas; Osorio, Ricardo S
Identifying cerebral vulnerability in late life may help prevent or slow the progression of aging-related chronic diseases. However, non-invasive biomarkers aimed at detecting subclinical cerebral changes in the elderly are lacking. Here, we have examined the potential of plasma total tau (t-tau) for identifying cerebral and cognitive deficits in normal elderly subjects. Patterns of cortical thickness and cortical glucose metabolism were used as outcomes of cerebral vulnerability. We found that increased plasma t-tau levels were associated with widespread reductions of cortical glucose uptake, thinning of the temporal lobe, and memory deficits. Importantly, tau-related reductions of glucose consumption in the orbitofrontal cortex emerged as a determining factor of the relationship between cortical thinning and memory loss. Together, these results support the view that plasma t-tau may serve to identify subclinical cerebral and cognitive deficits in normal aging, allowing detection of individuals at risk for developing aging-related neurodegenerative conditions.
PMID: 33147571
ISSN: 1945-4589
CID: 4664212

Editorial: Identification of Multiple Targets in the Fight Against Alzheimer's Disease [Editorial]

Giannoni, Patrizia; Fossati, Silvia; Marcello, Elena; Claeysen, Sylvie
PMCID:7308806
PMID: 32612524
ISSN: 1663-4365
CID: 4504462

Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA): Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease-Opportunities for Therapy

Carare, Roxana O; Aldea, Roxana; Agarwal, Nivedita; Bacskai, Brian J; Bechman, Ingo; Boche, Delphine; Bu, Guojun; Bulters, Diederik; Clemens, Alt; Counts, Scott E; de Leon, Mony; Eide, Per K; Fossati, Silvia; Greenberg, Steven M; Hamel, Edith; Hawkes, Cheryl A; Koronyo-Hamaoui, Maya; Hainsworth, Atticus H; Holtzman, David; Ihara, Masafumi; Jefferson, Angela; Kalaria, Raj N; Kipps, Christopher M; Kanninen, Katja M; Leinonen, Ville; McLaurin, JoAnne; Miners, Scott; Malm, Tarja; Nicoll, James A R; Piazza, Fabrizio; Paul, Gesine; Rich, Steven M; Saito, Satoshi; Shih, Andy; Scholtzova, Henrieta; Snyder, Heather; Snyder, Peter; Thormodsson, Finnbogi Rutur; van Veluw, Susanne J; Weller, Roy O; Werring, David J; Wilcock, Donna; Wilson, Mark R; Zlokovic, Berislav V; Verma, Ajay
Two of the key functions of arteries in the brain are (1) the well-recognized supply of blood via the vascular lumen and (2) the emerging role for the arterial walls as routes for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid beta (Aβ), from the brain and retina. As the brain and retina possess no conventional lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via transport along basement membranes in the walls of capillaries and arteries that form the intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but the mechanisms underlying the failure are unclear. In some people this is reflected in the accumulation of Aβ plaques in the brain in Alzheimer's disease (AD) and deposition of Aβ within artery walls as cerebral amyloid angiopathy (CAA). Knowledge of the dynamics of IPAD and why it fails with age is essential for establishing diagnostic tests for the early stages of the disease and for devising therapies that promote the clearance of Aβ in the prevention and treatment of AD and CAA. This editorial is intended to introduce the rationale that has led to the establishment of the Clearance of Interstitial Fluid (ISF) and CSF (CLIC) group, within the Vascular Professional Interest Area of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment.
PMCID:7396859
PMID: 32775596
ISSN: 2352-8729
CID: 4556022

Impact of Tau on Neurovascular Pathology in Alzheimer's Disease

Canepa, Elisa; Fossati, Silvia
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
PMCID:7817626
PMID: 33488493
ISSN: 1664-2295
CID: 4766802

Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease

Fossati, Silvia; Ramos Cejudo, Jaime; Debure, Ludovic; Pirraglia, Elizabeth; Sone, Je Yeong; Li, Yi; Chen, Jingyun; Butler, Tracy; Zetterberg, Henrik; Blennow, Kaj; de Leon, Mony J
Introduction/UNASSIGNED:Plasma tau may be an accessible biomarker for Alzheimer's disease (AD), but the correlation between plasma and cerebrospinal fluid (CSF) tau and the value of combining plasma tau with CSF tau and phospho-tau (P-tau) are still unclear. Methods/UNASSIGNED:Plasma-tau, CSF-tau, and P-tau were measured in 97 subjects, including elderly cognitively normal controls (n = 68) and patients with AD (n = 29) recruited at the NYU Center for Brain Health, with comprehensive neuropsychological and magnetic resonance imaging evaluations. Results/UNASSIGNED: < .001, area under the receiver operating characteristic curve = 0.79) similarly to CSF tau and CSF P-tau and was negatively correlated with cognition in AD. Plasma and CSF tau measures were poorly correlated. Adding plasma tau to CSF tau or CSF P-tau significantly increased the areas under the receiver operating characteristic curve from 0.80 and 0.82 to 0.87 and 0.88, respectively. Discussion/UNASSIGNED:Plasma tau is higher in AD independently from CSF-tau. Importantly, adding plasma tau to CSF tau or P-tau improves diagnostic accuracy, suggesting that plasma tau may represent a useful biomarker for AD, especially when added to CSF tau measures.
PMCID:6624242
PMID: 31334328
ISSN: 2352-8729
CID: 3986922