Try a new search

Format these results:

Searched for:

person:friedc01

in-biosketch:true

Total Results:

5


Association of dietary fibre intake and gut microbiota in adults

Lin, Daniel; Peters, Brandilyn A; Friedlander, Charles; Freiman, Hal J; Goedert, James J; Sinha, Rashmi; Miller, George; Bernstein, Mitchell A; Hayes, Richard B; Ahn, Jiyoung
Increasing evidence indicates that gut microbiota may influence colorectal cancer risk. Diet, particularly fibre intake, may modify gut microbiota composition, which may affect cancer risk. We investigated the relationship between dietary fibre intake and gut microbiota in adults. Using 16S rRNA gene sequencing, we assessed gut microbiota in faecal samples from 151 adults in two independent study populations: National Cancer Institute (NCI), n 75, and New York University (NYU), n 76. We calculated energy-adjusted fibre intake based on FFQ. For each study population with adjustment for age, sex, race, BMI and smoking, we evaluated the relationship between fibre intake and gut microbiota community composition and taxon abundance. Total fibre intake was significantly associated with overall microbial community composition in NYU (P=0·008) but not in NCI (P=0·81). In a meta-analysis of both study populations, higher fibre intake tended to be associated with genera of class Clostridia, including higher abundance of SMB53 (fold change (FC)=1·04, P=0·04), Lachnospira (FC=1·03, P=0·05) and Faecalibacterium (FC=1·03, P=0·06), and lower abundance of Actinomyces (FC=0·95, P=0·002), Odoribacter (FC=0·95, P=0·03) and Oscillospira (FC=0·96, P=0·06). A species-level meta-analysis showed that higher fibre intake was marginally associated with greater abundance of Faecalibacterium prausnitzii (FC=1·03, P=0·07) and lower abundance of Eubacterium dolichum (FC=0·96, P=0·04) and Bacteroides uniformis (FC=0·97, P=0·05). Thus, dietary fibre intake may impact gut microbiota composition, particularly class Clostridia, and may favour putatively beneficial bacteria such as F. prausnitzii. These findings warrant further understanding of diet-microbiota relationships for future development of colorectal cancer prevention strategies.
PMID: 30355393
ISSN: 1475-2662
CID: 3384862

A taxonomic signature of obesity in a large study of American adults

Peters, Brandilyn A; Shapiro, Jean A; Church, Timothy R; Miller, George; Trinh-Shevrin, Chau; Yuen, Elizabeth; Friedlander, Charles; Hayes, Richard B; Ahn, Jiyoung
Animal models suggest that gut microbiota contribute to obesity; however, a consistent taxonomic signature of obesity has yet to be identified in humans. We examined whether a taxonomic signature of obesity is present across two independent study populations. We assessed gut microbiome from stool for 599 adults, by 16S rRNA gene sequencing. We compared gut microbiome diversity, overall composition, and individual taxon abundance for obese (BMI ≥ 30 kg/m2), overweight (25 ≤ BMI < 30), and healthy-weight participants (18.5 ≤ BMI < 25). We found that gut species richness was reduced (p = 0.04), and overall composition altered (p = 0.04), in obese (but not overweight) compared to healthy-weight participants. Obesity was characterized by increased abundance of class Bacilli and its families Streptococcaceae and Lactobacillaceae, and decreased abundance of several groups within class Clostridia, including Christensenellaceae, Clostridiaceae, and Dehalobacteriaceae (q < 0.05). These findings were consistent across two independent study populations. When random forest models were trained on one population and tested on the other as well as a previously published dataset, accuracy of obesity prediction was good (~70%). Our large study identified a strong and consistent taxonomic signature of obesity. Though our study is cross-sectional and causality cannot be determined, identification of microbes associated with obesity can potentially provide targets for obesity prevention and treatment.
PMCID:6021409
PMID: 29950689
ISSN: 2045-2322
CID: 3161952

Erratum to: The gut microbiota in conventional and serrated precursors of colorectal cancer [Correction]

Peters, Brandilyn A; Dominianni, Christine; Shapiro, Jean A; Church, Timothy R; Wu, Jing; Miller, George; Yuen, Elizabeth; Freiman, Hal; Lustbader, Ian; Salik, James; Friedlander, Charles; Hayes, Richard B; Ahn, Jiyoung
PMCID:5338091
PMID: 28264712
ISSN: 2049-2618
CID: 2476172

The gut microbiota in conventional and serrated precursors of colorectal cancer

Peters, Brandilyn A; Dominianni, Christine; Shapiro, Jean A; Church, Timothy R; Wu, Jing; Miller, George; Yuen, Elizabeth; Freiman, Hal; Lustbader, Ian; Salik, James; Friedlander, Charles; Hayes, Richard B; Ahn, Jiyoung
BACKGROUND: Colorectal cancer is a heterogeneous disease arising from at least two precursors-the conventional adenoma (CA) and the serrated polyp. We and others have previously shown a relationship between the human gut microbiota and colorectal cancer; however, its relationship to the different early precursors of colorectal cancer is understudied. We tested, for the first time, the relationship of the gut microbiota to specific colorectal polyp types. RESULTS: Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Participants were categorized as CA cases (n = 144), serrated polyp cases (n = 73), or polyp-free controls (n = 323). CA cases were further classified as proximal (n = 87) or distal (n = 55) and as non-advanced (n = 121) or advanced (n = 22). Serrated polyp cases were further classified as hyperplastic polyp (HP; n = 40) or sessile serrated adenoma (SSA; n = 33). We compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups. CA cases had lower species richness in stool than controls (p = 0.03); in particular, this association was strongest for advanced CA cases (p = 0.004). In relation to overall microbiota composition, only distal or advanced CA cases differed significantly from controls (p = 0.02 and p = 0.002). In taxon-based analysis, stool of CA cases was depleted in a network of Clostridia operational taxonomic units from families Ruminococcaceae, Clostridiaceae, and Lachnospiraceae, and enriched in the classes Bacilli and Gammaproteobacteria, order Enterobacteriales, and genera Actinomyces and Streptococcus (all q < 0.10). SSA and HP cases did not differ in diversity or composition from controls, though sample size for these groups was small. Few taxa were differentially abundant between HP cases or SSA cases and controls; among them, class Erysipelotrichi was depleted in SSA cases. CONCLUSIONS: Our results indicate that gut microbes may play a role in the early stages of colorectal carcinogenesis through the development of CAs. Findings may have implications for developing colorectal cancer prevention therapies targeting early microbial drivers of colorectal carcinogenesis.
PMCID:5203720
PMID: 28038683
ISSN: 2049-2618
CID: 2388442

ANALGESIA IN OUTPATIENT COLONOSCOPY - NALBUPHINE VERSUS MEPERIDINE [Meeting Abstract]

ACKERT, JJ; FRIEDLANDER, CN; TOBIAS, H
ISI:A1981MT06900014
ISSN: 0002-9270
CID: 808372