Try a new search

Format these results:

Searched for:

person:galavp01

in-biosketch:yes

Total Results:

37


The AAPM/ASTRO 2023 Core Physics Curriculum for Radiation Oncology Residents

Studenski, Matthew T; Cetnar, Ashley; Derosiers, Colleen M; Dooley, Sarah; Gagneur, Justin D; Galavis, Paulina E; Kainz, Kristofer K; Lamichhane, Narottam; Sandwall, Peter A; Shen, Jiajian; Tien, Christopher J; Wang, Dongxu; Wang, Iris Z; Warkentin, Heather K; McAvoy, Sarah
PURPOSE/OBJECTIVE:The American Association of Physicists in Medicine Radiation Oncology Medical Physics Education Subcommittee (ROMPES) has updated the radiation oncology physics core curriculum for medical residents in the radiation oncology specialty. METHODS AND MATERIALS/METHODS:Thirteen physicists from the United States and Canada involved in radiation oncology resident education were recruited to ROMPES. The group included doctorates and master's of physicists with a range of clinical or academic roles. Radiation oncology physician and resident representatives were also consulted in the development of this curriculum. In addition to modernizing the material to include new technology, the updated curriculum is consistent with the format of the American Board of Radiology Physics Study Guide Working Group to promote concordance between current resident educational guidelines and examination preparation guidelines. RESULTS:The revised core curriculum recommends 56 hours of didactic education like the 2015 curriculum but was restructured to provide resident education that facilitates best clinical practice and scientific advancement in radiation oncology. The reference list, glossary, and practical modules were reviewed and updated to include recent literature and clinical practice examples. CONCLUSIONS:ROMPES has updated the core physics curriculum for radiation oncology residents. In addition to providing a comprehensive curriculum to promote best practice for radiation oncology practitioners, the updated curriculum aligns with recommendations from the American Board of Radiology Physics Study Guide Working Group. New technology has been integrated into the curriculum. The updated curriculum provides a framework to appropriately cover the educational topics for radiation oncology residents in preparation for their subsequent career development.
PMID: 37689369
ISSN: 1879-355x
CID: 5626382

Different Re-Irradiation Techniques after Breast-Conserving Surgery for Recurrent or New Primary Breast Cancer

Abeloos, Camille Hardy; Purswani, Juhi M; Galavis, Paulina; McCarthy, Allison; Hitchen, Christine; Choi, J Isabelle; Gerber, Naamit K
Breast re-irradiation (reRT) after breast-conserving surgery (BCS) using external beam radiation is an increasingly used salvage approach for women presenting with recurrent or new primary breast cancer. However, radiation technique, dose and fractionation as well as eligibility criteria differ between studies. There is also limited data on efficacy and safety of external beam hypofractionation and accelerated partial-breast irradiation (APBI) regimens. This paper reviews existing retrospective and prospective data for breast reRT after BCS, APBI reRT outcomes and delivery at our institution and the need for a randomized controlled trial using shorter courses of radiation to better define patient selection for different reRT fractionation regimens.
PMCID:9857440
PMID: 36661737
ISSN: 1718-7729
CID: 5415062

Pulmonary Toxic Effects After Myeloablative Conditioning With Total Body Irradiation Delivered via Volumetric Modulated Arc Therapy With Fludarabine

Modrek, Aram S; Karp, Jerome M; Byun, David; Gerber, Naamit K; Abdul-Hay, Maher; Al-Homsi, Ahmad Samer; Galavis, Paulina; Teruel, Jose; Yuan, Ye
We present the case of a 56-year-old female with a diagnosis of acute T-cell lymphoblastic leukemia who received myeloablative conditioning for bone marrow transplant with total body irradiation (TBI) using volumetric modulated arc therapy (VMAT) to the upper body and anterior-posterior/posterior-anterior (AP/PA) open fields to the lower body followed by hematopoietic stem cell transplant. Her clinical course was complicated by high-grade pulmonary toxic effects 55 days after treatment that resulted in death. We discuss the case, planning considerations by radiation oncologists and radiation physicists, and the multidisciplinary medical management of this patient.
PMID: 35598860
ISSN: 1879-8519
CID: 5275182

Accelerated partial breast irradiation in early stage breast cancer

Galavis, Paulina E; Abeloos, Camille Hardy; Cheng, Pine C; Hitchen, Christine; McCarthy, Allison; Purswani, Juhi M; Shah, Bhartesh; Taneja, Sameer; Gerber, Naamit K
Accelerated partial breast irradiation (APBI) is increasingly used to treat select patients with early stage breast cancer. However, radiation technique, dose and fractionation as well as eligibility criteria differ between studies. This has led to controversy surrounding appropriate patients for APBI and an assessment of the toxicity and cosmetic outcomes of APBI as compared to whole breast irradiation (WBI). This paper reviews existing data for APBI, APBI delivery at our institution, and ongoing research to better define patient selection, treatment delivery, dosimetric considerations and toxicity outcomes.
PMCID:9685302
PMID: 36439449
ISSN: 2234-943x
CID: 5383472

Interprofessional Image Verification Workshop for Physician and Physics Residents: A Multi-Institutional Experience

Padilla, Laura; Burmeister, Jay W; Burnett, Omer Lee; Covington, Elizabeth L; Den, Robert B; Dominello, Michael M; Du, Kevin L; Galavis, Paulina E; Junell, Stephanie; Kahn, Jenna; Kishore, Monica; Mooney, Karen; Mukhopadhyay, Nitai D; Studenski, Matthew T; Yechieli, Raphael L; Fields, Emma C
PURPOSE/OBJECTIVE:Verification of patient position through pretreatment setup imaging is crucial in modern radiation therapy. As treatment complexity increases and technology evolves, physicist-physician collaboration becomes imperative for safe and successful radiation delivery. Despite the importance of both, residency programs lack formal interprofessional education (IPE) activities or structured training for image verification. Here we show the impact of an interprofessional image verification workshop for residents in a multi-institutional setting. METHODS:The workshop included a lecture by the attending physicist and physician, and hands-on image registration practice by learners (medical physics residents, MP; and radiation oncology residents, RO). All participants filled out pre- and postactivity surveys and rated their comfort from 1 to 10 in (A) selecting what type of imaging to order for a given case and (B) independently assessing the setup quality based on imaging. A paired 1-tailed t test (α = 0.05) was used to evaluate significance; Spearman rank correlation coefficient was used to assess correlation of ratings and RO postgraduate year (PGY). Surveys had free-response questions about IPE and image verification activities in residency. RESULTS: = 1.2 ± 1.6, P = .016). RO confidence scores moderately correlated with PGY. Survey responses indicated that image verification training is mostly unstructured, with extent of exposure varying by program and attending; most with little-to-no training. Time constraints were identified as the main barrier. IPE was noted as a useful way to incorporate different perspectives into the process. CONCLUSIONS:Formal image verification training increases resident comfort with setup imaging review and provides opportunities for interprofessional collaboration in radiation oncology residency programs.
PMID: 34380009
ISSN: 1879-355x
CID: 5010812

Image Guided Volumetrically Modulated Total Body Irradiation (TBI): Progress on Single Institution Phase 2 Clinical Trial

Teruel, J R; Galavis, P; McCarthy, A; Taneja, S; Malin, M; Hitchen, C; Yuan, Y; Barbee, D; Gerber, N K
PURPOSE/OBJECTIVE(S): TBI is a backbone of many conditioning regimens for hematopoietic stem cell transplants but can lead to both acute and late toxicity including radiation-induced interstitial pneumonitis. The incidence of idiopathic pneumonia syndrome (IPS) after TBI-based myeloablative conditioning regimens ranges from 7% to 35%. The purpose of this study is to implement image guided volumetrically modulated technique (VMAT) for TBI with the goal of lung sparing and improved target coverage. MATERIALS/METHODS: Nine patients have been treated using image-guided VMAT based TBI at our institution as part of a single-arm phase 2 clinical trial for patients undergoing myeloablative conditioning regimens. The trial was approved by our internal review board (IRB) in September 2020 and aims to accrue 15 patients within one year. All patients enrolled in the trial have signed informed consent. The primary endpoints of the study are the following dosimetric constraints: V100% >= 90%, D98% >= 85% of Rx dose for the planning target volume (PTV), and a mean lung dose < 9 Gy. PTV is defined as the body contour cropped 5 mm from the surface and excluding lungs and kidneys but extended 3 mm into these organs. Additional secondary dosimetric endpoints include mean dose to each individual kidney < 11 Gy, and maximum dose to 2cc of the entire body < 130% of Rx dose. Clinical endpoints include the occurrence of IPS in the first 100 days after transplant, occurrence of acute graft versus host disease (GVHD), transplant related mortality or mortality in the first 100 days following transplant.
RESULT(S): Patients were treated to 12 Gy in 8 BID fractions (n=6) or 13.2 Gy in 8 BID fractions (n=3) over four consecutive days. All patients were able to complete treatment to the prescribed dose as planned. All patient plans met dosimetric constraints of the study. The median PTV V100% was 93.2% of Rx dose (Max: 95.6%, Min: 92.1%), the median PTV D98% was 90.2% of Rx dose (Max: 94.3%, Min: 88.3%), and the median lung dose mean was 7.63 Gy (Max: 7.94 Gy, Min: 7.29 Gy). In addition, individual kidney mean doses were < 11 Gy, and body maximum dose (D2cc) was < 130% of Rx dose for all patients. At this time, only one patient (12 Gy treatment) has reached the 100 day post-transplant follow-up with the following findings: no relapse on bone marrow biopsy, no pneumonitis, resolved acute GVHD overall grade 1 (skin: 1, GI: 0, Liver: 0), resolved dermatitis (grade 1), resolved vomiting (grade 2), ongoing diarrhea and nausea (grade 1, previously grade 2).
CONCLUSION(S): Our initial results indicate that primary and secondary dosimetric endpoints were achievable for all protocol patients treated thus far. As the trial progresses, secondary clinical endpoints at 100 day follow-up will be analyzed to evaluate occurrence of IPS, survival, and treatment related toxicities.
Copyright
EMBASE:636625880
ISSN: 1879-355x
CID: 5082192

Assessing the reproducibility of CBCT-derived radiomics features using a novel three-dimensional printed phantom

Spuhler, Karl D; Teruel, Jose R; Galavis, Paulina E
PURPOSE/OBJECTIVE:Radiomics modeling is an exciting avenue for enhancing clinical decision making and personalized treatment. Radiation oncology patients often undergo routine imaging for position verification, particularly using LINAC-mounted cone beam computed tomography (CBCT). The wealth of imaging data collected in modern radiation therapy presents an ideal use case for radiomics modeling. Despite this, texture feature (TF) calculation can be limited by concerns over feature stability and reproducibility; in theory, this issue is compounded by the relatively poor image quality of CBCT, as well as variation of acquisition and reconstruction parameters. METHODS:In this study, we developed and validated a novel three-dimensional (3D) printed phantom for evaluating CBCT-based TF reliability. The phantom has a cylindrical shape (22 cm diameter and 25.5 cm height) with five inner inserts designed to hold custom-printed rods (1 cm diameter and 10-20 cm height) of various materials, infill shapes, and densities. TF reproducibility was evaluated across and within three LINACs from a single vendor using sets of three consecutive CBCT taken with the head, thorax, and pelvis clinical imaging protocols. PyRadiomics was used to extract a standard set of TFs from regions of interest centered on each rod. Two-way mixed effects absolute agreement intra-class correlation coefficient (ICC) was used to evaluate TF reproducibility, with features showing ICC values above 0.9 considered robust if their Bonferroni-corrected p-value was below 0.05. RESULTS:A total of 63, 87, and 83 features exhibited test-retest reliability for the head, thorax, and pelvis imaging protocols respectively. When assessing stability between discreet imaging sessions on the same LINAC, these numbers were reduced to 5, 63, and 70 features, respectively. The thorax and pelvis protocols maintained a rich candidate feature space in inter-LINAC analysis with 61 and 65 features, respectively, exceeding the ICC criteria. Crucially, no features were deemed reproducible when compared between protocols. CONCLUSIONS:We have developed a 3D phantom for consistent evaluation of TF stability and reproducibility. For LINACs from a single vendor, our study found a substantial number of features available for robust radiomics modeling from CBCT imaging. However, some features showed variations across LINACs. Studies involving CBCT-based radiomics must preselect features prior to their use in clinical-based models.
PMID: 34120354
ISSN: 2473-4209
CID: 4964812

Evaluation of treatment plan uncertainties for vmat TBI [Meeting Abstract]

Duarte, I; Galavis, P; Gerber, N; Barbee, D; Teruel, J
Purpose: To investigate the effect of patient positioning in Volumetric Modulated Arc Therapy (VMAT) for Total Body Irradiation (TBI) given the use of multiple isocenters, by simulating offsets in patient positioning and evaluating changes to planned dose distributions.
Method(s): VMAT treatment plans for seven TBI patients treated as part of a prospective stage II clinical trial were evaluated. Plan uncertainties were calculated by introducing 5mm and 10mm translational shifts to the plans' isocenters in the lateral (x), vertical (y), and longitudinal (z) directions. Dose distributions were then re-calculated in the treatment planning system (Eclipse), in order to evaluate dosimetric robustness to one global imaging shift at treatment. Differences in target volume (PTV) coverage and doses to organs at risk were evaluated based on four parameters: lung mean dose, PTV-V100%, PTV-D98%, and kidney mean doses.
Result(s): Lung mean dose increased an average of 8.2cGy, 4.4cGy, and 3.3cGy when shifted 5mm in the x, y, z directions (respectively) across seven patients; 33.2CGy, 18.5cGy, 18.3cGy for 10mm shifts in x, y, z. Target coverage V100% decreased an average of 0.3%, 0.03%, 0.1% for 5mm shifts, and 1.1%, 0.8%, 0.4% for 10mm shifts in x, y, z. D98% decreased 0.9%, 0.3%, 0.3% when shifted 5mm; 3.5%, 2.1%, 1.0% when shifted 10mm in x, y, z. Mean dose to the left kidney increased 6.6cGy, 9.7cGy, 2.8cGy for 5mm, and 28.1cGy, 32.7cGy, 18.0cGy for 10mm shifts in x, y, z. Right kidney mean dose increased 11.9cGy, 8.9cGy, 3.1cGy for 5mm, and 36.5, 30.5, 19.8cGy for 10mm.
Conclusion(s): Though small in relation to total dose, the largest increase in mean lung dose and decrease in coverage was seen with lateral shifts as compared to vertical or longitudinal shifts. These results support the use of an approach with preferential alignment to the chest region (lung-sparing), as long as residual imaging alignment outside the chest is kept below 10mm. Jose Teruel has received honorarium from Varian Medical Systems
EMBASE:635753026
ISSN: 0094-2405
CID: 4987592

Streamlining complex multi-isocentric VMAT based treatment delivery using a newly developed software tool [Meeting Abstract]

Teruel, J; Galavis, P; Osterman, K; Taneja, S; Cooper, B; Gerber, N; Hitchen, C; Barbee, D
Purpose: Multi-isocentric treatment delivery for CSI and TBI poses specific challenges for treatment delivery. We have developed a software tool to streamline all aspects of delivery for therapists and physicists at the machine, as well as to inform attending physicians of setup variability and image residuals at different locations.
Method(s): Our institution delivers VMAT-based CSI and TBI with up to 3 and 7 isocenters, respectively. A software tool was developed to assist with treatment delivery including initial patient setup, patient imaging, automatic calculation of the optimal global shift based on each isocenter's ideal shift, and automatic calculation of each isocenter's couch coordinates. Initial treatment couch coordinates are queried via the Eclipse scripting API. The global shift was calculated prioritizing the head isocenter for CSI treatments and the chest isocenter for TBI treatments by first maximizing residual tolerance at any other location prior to accepting any residual deviation at these locations. Maximum residuals tolerance was determined based on target margins, plan uncertainty and as per physician instructions. Delivery parameters are reported to a document uploaded to ARIA via API.
Result(s): The developed tool was employed for 11 cases. The software tool replaced the need for plan shift comments or instructions for therapists. In particular, its use eliminated the need to provide isocenter shifts to therapists by directly providing final couch parameters for treatment, greatly reducing the risk of delivery errors. The software effectively informed the therapists if any expected tolerance was surpassed, triggering a patient setup evaluation.
Conclusion(s): The described software tool is a core component to our multi-isocenter treatment programs and has streamlined delivery of these complex techniques that would otherwise require complicated instructions, including multiple shifts and on-the-fly calculations of optimal image alignment based on multiple imaging locations. This has substantially reduced the possibility of delivery errors
EMBASE:635748300
ISSN: 0094-2405
CID: 4987622

Nyu clinical experience with total body irradiation: From 3d laterals to image-guided VMAT [Meeting Abstract]

Galavis, P; Hitchen, C; Mccarthy, A; Malin, M; Taneja, S; Ayyalasomayajula, S; Yuan, Y; Gerber, N; Barbee, D; Teruel, J
Purpose: Patients receiving myeloablative total body irradiation (TBI) doses >= 12Gy are at risk of developing interstitial pneumonitis. At our institution, TBI transitioned from extended distance opposed Laterals to image-guided VMAT, in an effort to improve coverage while sparing lungs and kidneys. This work presents a dosimetric comparison between 3D Laterals and VMAT.
Method(s): Nine patients were treated with VMAT as part of an ongoing phase II single-arm clinical trial. VMAT patients were CT-simulated supine, with thermoplastic masks for head/neck, chest/abdomen/pelvis and feet. VMAT planning (12Gy (n=6) or 13.2Gy (n=3) in 8-BID fractions) utilizes 6MV multi-isocentric arcs and AP/PA beams to treat the upper and lower body, respectively. Ten 3D Lateral patients were CT-simulated supine with arms positioned/immobilized for lung shielding, with rice compensation between legs/feet. Laterals plan (12Gy in 8-BID fractions) uses 15MV, beam spoiler, head compensation, and subfields to maintain coverage and mean-lungs dose <10.5Gy. Target (Body-5mm, extending 3mm into lungs and kidneys for VMAT; Body-2cm for Laterals) coverage was evaluated at V100%, and D98% (percentage of Rx). Absolute dose to lungs and kidneys were reportedResults: Median Target V100% and D98% for VMAT was 93.2% (Range: 95.6% to 92.1%) and 90.2% (94.3% to 88.3%), whereas for Laterals V100% and D98% was 57.3% (66.5% to 46.3%) and 80.6% (75.5% to 84%). The median Lung mean dose was 7.6Gy (7.3Gy to 7.9Gy) for VMAT. The median mean dose to kidney was 10.4Gy (10.1Gy to 10.7Gy) for VMAT, and 12.5Gy (11.9Gy to 13.5Gy) for Laterals.
Conclusion(s): We have established a VMAT-TBI program for patients requiring myeloablative irradiation. Improvement in target coverage is demonstrated by V100% and D98%, while reducing the mean dose to the lungs significantly from 10.5Gy to 8Gy
EMBASE:635748271
ISSN: 0094-2405
CID: 4987632