Try a new search

Format these results:

Searched for:

person:gardnl01

in-biosketch:true

Total Results:

36


Author Correction: Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance

Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam S D Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, George
PMID: 34845391
ISSN: 1546-170x
CID: 5065482

Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance

Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam Sd Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, George
The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.
PMCID:5419876
PMID: 28394331
ISSN: 1546-170x
CID: 2528112

Stress-induced inhibition of nonsense-mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11

Martin, L; Gardner, L B
SLC7A11 encodes a subunit of the xCT cystine/glutamate amino-acid transport system and has a critical role in the generation of glutathione and the protection of cells from oxidative stress. Expression of SLC7A11 promotes tumorigenesis and chemotherapy resistance, but while SLC7A11 has been previously noted to be upregulated in hypoxic cells, its regulation has not been fully delineated. We have recently shown that nonsense-mediated RNA decay (NMD) is inhibited by cellular stresses generated by the tumor microenvironment, including hypoxia, and augments tumorigenesis. Here we demonstrate that the inhibition of NMD by various cellular stresses leads to the stabilization and upregulation of SLC7A11 mRNA and protein. The inhibition of NMD and upregulation of SLC7A11 augments intracellular cystine transport and increases intracellular levels of cysteine and glutathione. Accordingly, the inhibition of NMD protects cells against oxidative stress via SLC7A11 upregulation. Together our studies identify a mechanism for the dynamic regulation of SLC7A11, through the stress-inhibited regulation of NMD, and add to the growing evidence that the inhibition of NMD is an adaptive response.
PMCID:4433865
PMID: 25399695
ISSN: 1476-5594
CID: 1720582

Phosphorylation of eIF2alpha triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma

Wengrod, Jordan; Wang, Ding; Weiss, Sarah; Zhong, Hua; Osman, Iman; Gardner, Lawrence B
Amino acid deprivation promotes the inhibition of the kinase complex mTORC1 (mammalian target of rapamycin complex 1) and activation of the kinase GCN2 (general control nonrepressed 2). Signaling pathways downstream of both kinases have been thought to independently induce autophagy. We showed that these two amino acid-sensing systems are linked. We showed that pharmacological inhibition of mTORC1 led to activation of GCN2 and phosphorylation of the eukaryotic initiation factor 2alpha (eIF2alpha) in a mechanism dependent on the catalytic subunit of protein phosphatase 6 (PP6C). Autophagy induced by pharmacological inhibition of mTORC1 required PP6C, GCN2, and eIF2alpha phosphorylation. Although some of the PP6C mutants found in melanoma did not form a strong complex with PP6 regulatory subunits and were rapidly degraded, these mutants paradoxically stabilized PP6C encoded by the wild-type allele and increased eIF2alpha phosphorylation. Furthermore, these PP6C mutations were associated with increased autophagy in vitro and in human melanoma samples. Thus, these data showed that GCN2 activation and phosphorylation of eIF2alpha in response to mTORC1 inhibition are necessary for autophagy. Additionally, we described a role for PP6C in this process and provided a mechanism for PP6C mutations associated with melanoma.
PMCID:4580977
PMID: 25759478
ISSN: 1937-9145
CID: 1495922

Cellular adaptation to nutrient deprivation: crosstalk between the mTORC1 and eIF2alpha signaling pathways and implications for autophagy

Wengrod, Jordan C; Gardner, Lawrence B
The hostile tumor microenvironment results in the generation of intracellular stresses including hypoxia and nutrient deprivation. In order to adapt to such conditions, the cell utilizes several stress-response mechanisms, including the attenuation of protein synthesis, the inhibition of cellular proliferation, and induction of autophagy. Autophagy leads to the degradation of cellular contents, including damaged organelles and mutant proteins, which the cell can then use as an alternate energy source. Two integral changes to the signaling milieu to promote such a response include inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and phosphorylation of eIF2alpha. This review will describe how conditions found in the tumor microenvironment regulate mTORC1 as well as eIF2alpha, the downstream impact of these modifications, and the implications in tumorigenesis. We will then discuss the remarkable similarities and overlapping function of these 2 signaling pathways, focusing on the response to amino acid deprivation, and present a new model involving crosstalk between them based on our recent work.
PMCID:4614032
PMID: 26039820
ISSN: 1551-4005
CID: 1784092

Clinical and laboratory characteristics associated with a high optical density anti-platelet factor 4 ELISA test

Lu, Benjamin Y; Kudlowitz, David; Gardner, Lawrence B
PURPOSE: Diagnosing heparin-induced thrombocytopenia, a potentially catastrophic immune-mediated disorder, continues to pose significant challenges for clinicians, as both clinical and laboratory tools lack specificity. There is mounting evidence supporting a positive correlation between definitive heparin-induced thrombocytopenia and optical density (OD) positivity from the widely available anti-platelet factor 4 enzyme-linked immunosorbent assays (PF4 ELISAs). However, the clinical features distinguishing these patients remain poorly understood. PATIENTS AND METHODS: To better characterize this group, we conducted a case-controlled, retrospective chart review of patients from two large, urban academic institutions who underwent a PF4 ELISA at a central laboratory. Associations between OD and 18 clinical characteristics were calculated using the Fisher's exact test for categorical variables and Wilcoxon rank-sum test for continuous variables. RESULTS: In total, 184 negative patients (OD <0.7), and 121 positive patients (OD >0.7), including 74 low-positive patients (0.7< OD <1.4) and 47 high-positive patients (OD >1.4) were identified. Several clinical variables were significantly different in the negative group compared with the positive group, including hospital day (P<0.001), previous admission within the past 3 months (P<0.001), and the presence of a new thrombus (P=0.003). However, many of these variables were not different between the negative and low-positive group, and were only distinct between the negative and high-positive group. When the low-positive and high-positive groups were compared, only the 4T score was significantly different (P=0.003). CONCLUSION: These data indicate that those with OD >1.4 form a distinct clinical group and support the clinical utility of the 4T score.
PMCID:4657791
PMID: 26640392
ISSN: 1179-2736
CID: 1870002

Identification and Characterization of Small Molecules That Inhibit Nonsense-Mediated RNA Decay and Suppress Nonsense p53 Mutations

Martin, Leenus; Grigoryan, Arsen; Wang, Ding; Wang, Jinhua; Breda, Laura; Rivella, Stefano; Cardozo, Timothy; Gardner, Lawrence B
Many of the gene mutations found in genetic disorders, including cancer, result in premature termination codons (PTC) and the rapid degradation of their mRNAs by nonsense-mediated RNA decay (NMD). We used virtual library screening, targeting a pocket in the SMG7 protein, a key component of the NMD mechanism, to identify compounds that disrupt the SMG7-UPF1 complex and inhibit NMD. Several of these compounds upregulated NMD-targeted mRNAs at nanomolar concentrations, with minimal toxicity in cell-based assays. As expected, pharmacologic NMD inhibition disrupted SMG7-UPF1 interactions. When used in cells with PTC-mutated p53, pharmacologic NMD inhibition combined with a PTC "read-through" drug led to restoration of full-length p53 protein, upregulation of p53 downstream transcripts, and cell death. These studies serve as proof-of-concept that pharmacologic NMD inhibitors can restore mRNA integrity in the presence of PTC and can be used as part of a strategy to restore full-length protein in a variety of genetic diseases. Cancer Res; 74(11); 3104-13. (c)2014 AACR.
PMCID:4040335
PMID: 24662918
ISSN: 0008-5472
CID: 1032302

PP6C Hotspot Mutations in Melanoma Display Sensitivity to Aurora Kinase Inhibition

Gold, Heidi L; Wengrod, Jordan; de Miera, Eleazar Vega-Saenz; Wang, Ding; Fleming, Nathaniel; Sikkema, Lisa; Kirchhoff, Tomas; Hochman, Tsivia; Goldberg, Judith D; Osman, Iman; Gardner, Lawrence B
Recent whole genome melanoma sequencing studies have identified recurrent mutations in the gene encoding the catalytic subunit of serine/threonine phosphatase 6 (PPP6C/PP6C). However, the biochemical, functional, and clinical ramifications of these mutations are unknown. Sequencing PP6C from patients with melanoma (233 primary and 77 metastatic specimens) with extended prospective clinical outcome revealed a large number of hotspot mutations in patients with both primary and metastatic melanoma. Despite minimal association between stage and presence of PP6C mutations in patients with primary melanoma, a subpopulation of cells within each tumor did contain PP6C mutations, suggesting PP6C mutation is an early, but non-tumor-initiating event in melanoma. Among patients with primary melanoma with PP6C mutations, patients with stop mutations had significantly shorter recurrence-free survival compared with patients without stop mutations. In addition, PP6C mutations were independent of commonly observed BRAF and NRAS mutations. Biochemically, PP6C mutations could be classified as those that interact with PP6C regulatory subunits and those that do not. Mutations that did not bind to PP6C regulatory subunits were associated with increased phosphorylation of Aurora kinase, a PP6C substrate, and mitotic defects. However, both classes of PP6C mutations led to increased sensitivity to Aurora kinase inhibition. Together, these data support for the first time that PP6C mutations are molecularly, biochemically, and clinically heterogeneous. Implications: PP6C mutations have distinct functional and clinical consequences in melanoma, and confer sensitivity to Aurora A kinase inhibitors. Mol Cancer Res; 12(3); 433-9. (c)2013 AACR.
PMCID:3962698
PMID: 24336958
ISSN: 1541-7786
CID: 883502

Regulation of nonsense-mediated mRNA decay: Implications for physiology and disease

Karam, Rachid; Wengrod, Jordan; Gardner, Lawrence B; Wilkinson, Miles F
Nonsense-mediated mRNA decay (NMD) is an mRNA quality control mechanism that destabilizes aberrant mRNAs harboring premature termination (nonsense) codons (PTCs). Recent studies have shown that NMD also targets mRNAs transcribed from a large subset of wild-type genes. This raises the possibility that NMD itself is under regulatory control. Indeed, several recent studies have shown that NMD activity is modulated in specific cell types and that key components of the NMD pathway are regulated by several pathways, including microRNA circuits and NMD itself. Cellular stress also modulates the magnitude of NMD by mechanisms that are beginning to be understood. Here, we review the evidence that NMD is regulated and discuss the physiological role for this regulation. We propose that the efficiency of NMD is altered in some cellular contexts to regulate normal biological events. In disease states-such as in cancer-NMD is disturbed by intrinsic and extrinsic factors, resulting in altered levels of crucial NMD-targeted mRNAs that lead to downstream pathological consequences. This article is part of a Special Issue entitled: RNA Decay mechanisms.
PMCID:3660545
PMID: 23500037
ISSN: 0006-3002
CID: 368202

Inhibition of nonsense-mediated RNA decay activates autophagy

Wengrod, Jordan; Martin, Leenus; Wang, Ding; Frischmeyer-Guerrerio, Pamela; Dietz, Harry C; Gardner, Lawrence B
Nonsense-mediated RNA decay (NMD) is an mRNA surveillance mechanism which rapidly degrades select cytoplasmic mRNAs. We and others have shown that NMD is a dynamically regulated process inhibited by amino acid deprivation, hypoxia, and other cellular stresses commonly generated by the tumor microenvironment. This inhibition of NMD can result in the accumulation of misfolded, mutated, and aggregated proteins, but how cells adapt to these aberrant proteins is unknown. Here we demonstrate that the inhibition of NMD activates autophagy, an established protein surveillance mechanism, both in vitro and in vivo. Conversely, the hyperactivation of NMD blunts the induction of autophagy in response to a variety of cellular stresses. The regulation of autophagy by NMD is due, in part, to stabilization of the documented NMD target ATF4. NMD inhibition increases intracellular amino acids, a hallmark of autophagy, and the concomitant inhibition of autophagy and NMD, either molecularly or pharmacologically, leads to synergistic cell death. Together these studies indicate that autophagy is an adaptive response to NMD inhibition and uncover a novel relationship between an mRNA surveillance system and a protein surveillance system, with important implications for the treatment of cancer.
PMCID:3648072
PMID: 23508110
ISSN: 0270-7306
CID: 402122