Try a new search

Format these results:

Searched for:

person:godsog01

in-biosketch:yes

Total Results:

94


Role of conserved amino acids in the catalytic activity of Escherichia coli primase

Rodina, Anna; Godson, G Nigel
The role of conserved amino acid residues in the polymerase domain of Escherichia coli primase has been studied by mutagenesis. We demonstrate that each of the conserved amino acids Arg146, Arg221, Tyr230, Gly266, and Asp311 is involved in the process of catalysis. Residues Glu265 and Asp309 are also critical because a substitution of each amino acid irreversibly destroys the catalytic activity. Two K229A and M268A mutant primase proteins synthesize only 2-nucleotide products in de novo synthesis reactions under standard conditions. Y267A mutant primase protein synthesizes both full-size and 2-nucleotide RNA, but with no intermediate-size products. From these data we discuss the significant step of the 2-nucleotide primer RNA synthesis by E. coli primase and the role of amino acids Lys229, Tyr267, and Met268 in primase complex stability
PMCID:1482863
PMID: 16672615
ISSN: 0021-9193
CID: 64589

Identification of the magnesium ion binding site in the catalytic center of Escherichia coli primase by iron cleavage

Godson GN; Schoenich J; Sun W; Mustaev AA
Magnesium is essential for the catalysis reaction of Escherichia coli primase, the enzyme synthesizing primer RNA chains for initiation of DNA replication. To map the Mg(2+) binding site in the catalytic center of primase, we have employed the iron cleavage method in which the native bound Mg(2+) ions were replaced with Fe(2+) ions and the protein was then cleaved in the vicinity of the metal binding site by adding DTT which generated free hydroxyl radicals from the bound iron. Three Fe(2+) cleavages were generated at sites designated I, II, and III. Adding Mg(2+) or Mn(2+) ions to the reaction strongly inhibited Fe(2+) cleavage; however, adding Ca(2+) or Ba(2+) ions had much less effect. Mapping by chemical cleavage and subsequent site-directed mutagensis demonstrated that three acidic residues, Asp345 and Asp347 of a conserved DPD sequence and Asp269 of a conserved EGYMD sequence, were the amino acid residues that chelated Mg(2+) ions in the catalytic center of primase. Cleavage data suggested that binding to D345 is significantly stronger than to D347 and somewhat stronger than to D269
PMID: 10630993
ISSN: 0006-2960
CID: 8563

A mutant Escherichia coli primase defective in elongation of primer RNA chains

Sun W; Schoneich J; Godson GN
Earlier we showed by affinity cross-linking of initiating substrates to Escherichia coli primase that one or more of the residues Lys211, Lys229, and Lys241 were involved in the catalytic center of the enzyme (A. A. Mustaev and G. N. Godson, J. Biol. Chem. 270:15711-15718, 1995). We now demonstrate by mutagenesis that only Lys241 but not Lys211 and Lys229 is part of the catalytic center. Primase with a mutation of Arg to Lys at position 241 (defined as K241R-primase) is almost unable to synthesize primer RNA (pRNA) on the single-stranded DNA-binding protein (SSB)/R199G4oric template. However, it is able to synthesize a pppApG dimer plus trace amounts of 8- to 11-nucleotide (nt) pRNA transcribed from the 5' CTG 3' pRNA initiation site on phage G4 oric DNA. The amount of dimer synthesized by K241R-primase is similar to that synthesized by the wild-type primase, demonstrating that the K241R mutant can initiate pRNA synthesis normally but is deficient in chain elongation. In the general priming system, the K241R-primase also can synthesize only the dimer and very small amounts of 11-nt pRNA. The results of gel retardation experiments suggested that this deficiency in pRNA chain elongation of the K241R mutant primase is unlikely to be caused by impairment of the DNA binding activity. The K241R mutant primase, however, can still prime DNA synthesis in vivo and in vitro
PMCID:93854
PMID: 10368151
ISSN: 0021-9193
CID: 8507

Synthesis of polyribonucleotide chains from the 3'-hydroxyl terminus of oligodeoxynucleotides by Escherichia coli primase

Sun W; Godson GN
Escherichia coli primase synthesizes RNA primers on DNA templates for the initiation of DNA replication. The sole known activity of primase is to catalyze synthesis of short RNA chains de novo. We now report a novel activity of primase, namely that it can synthesize RNA from the 3'-hydroxyl terminus of a pre-existing oligodeoxynucleotide. The oligonucleotide-primed synthesis of RNA by primase occurs in both of the G4oric-specific priming system and the dnaB protein associated general priming system. This priming reaction of primase is verified by a number of biochemical methods, including inhibition by modified 3'-phosphate of oligonucleotides and deoxyribonuclease I and ribonuclease H cleavages. We also show that the primed RNA is an effective primer for the synthesis of DNA chain by E. coli DNA polymerase III holoenzyme. The significance of this finding to primases generating multimeric length RNA is discussed
PMID: 9632699
ISSN: 0021-9258
CID: 7947

ATP cross-linked to Escherichia coli single-strand DNA-binding protein can be utilized by the catalytic center of primase as initiating nucleotide for primer RNA synthesis on phage G4oric template

Godson GN; Mustaev AA; Sun W
We report a new observation of the role of Escherichia coli single-strand DNA binding protein (SSB) in synthesis of primer RNA (pRNA) catalyzed by.E.coli primase on the SSB-coated phage G4oric template. Using a set of ATP priming substrates with reactive groups attached to the 5' gamma-phosphate on different length 'arms', we have demonstrated that, in the primase/SSB/G4oric pRNA synthesis complex, ATP cross-linked to both primase and SSB could be equally utilized as initiating nucleotide for pRNA synthesis. The distance between SSB surface and alpha-phosphorus of the priming substrate was estimated to be less than 7 A. ATP cross-linked to primase and SSB can be further elongated in the presence of other NTPs, giving almost identical patterns of covalently attached pRNAs of up to 12 nucleotides in length. The regions of primase and SSB with cross-linked ATP that can be used for pRNA synthesis are, therefore, arranged in a similar way relative to the active center of pRNA synthesis. The pRNA covalently linked to SSB was localized, mapping between Met48 and Trp88. This observation raises the possibility that SSB may play an active role in the initiation of pRNA synthesis in this system
PMID: 9521700
ISSN: 0006-2960
CID: 7579

Structure of the Escherichia coli primase/single-strand DNA-binding protein/phage G4oric complex required for primer RNA synthesis

Sun W; Godson GN
Escherichia coli primase/SSB/single-stranded phage G4oric is a simple system to study how primase interacts with DNA template to synthesize primer RNA for initiation of DNA replication. By a strategy of deletion analysis and antisense oligonucleotide protection on small single-stranded G4oric fragments, we have identified the DNA sequences required for binding primase and the critical location of single-strand DNA-binding (SSB) protein. Together with the previous data, we have defined the structure of the primase/SSB/G4oric priming complex. Two SSB tetramers bind to the G4oric secondary structure, which dictates the spacing of 3' and 5' bound adjacent SSB tetramers and leaves SSB-free regions on both sides of the stem-loop structure. Two primase molecules then bind separately to specific DNA sequences in the 3' and 5' SSB-free G4oric regions. Binding of the 3' SSB tetramer, upstream of the primer RNA initiation site, is also necessary for priming. The generation of a primase-recognition target by SSB phasing at DNA hairpin structures may be applicable to the binding of initiator proteins in other single-stranded DNA priming systems. Novel techniques used in this study include antisense oligonucleotide protection and RNA synthesis on an SSB-melted, double-stranded DNA template.
PMID: 9500915
ISSN: 0022-2836
CID: 7946

Interaction of Escherichia coli primase with a phage G4ori(c)-E. coli SSB complex

Sun W; Godson GN
We earlier reported that Escherichia coli single-stranded DNA-binding protein (SSB) bound in a fixed position to the stem-loop structure of the origin of complementary DNA strand synthesis in phage G4 (G4ori(c)), leaving stem-loop I and the adjacent 5' CTG 3', the primer RNA initiation site, as an SSB-free region (W. Sun and G. N. Godson, J. Biol. Chem. 268:8026-8039, 1993). Using a small 278-nucleotide (nt) G4ori(c) single-stranded DNA fragment that supported primer RNA synthesis, we now demonstrate by gel shift that E. coli primase can stably interact with the SSB-G4ori(c) complex. This stable interaction requires Mg2+ for specificity. At 8 mM Mg2+, primase binds to an SSB-coated 278-nt G4ori(c) fragment but not to an SSB-coated control 285-nt LacZ ss-DNA fragment. In the absence of Mg2+, primase binds to both SSB-coated fragments and gives a gel shift. T4 gene 32 protein cannot substitute for E. coli SSB in this reaction. Stable interaction of primase with naked G4ori(c). single-stranded DNA was not observed. DNase I and micrococcal nuclease footprinting, of both 5' and 3' 32P-labeled DNA, demonstrated that primase interacts with two regions of G4ori(c): one covering stem-loop I and the 3' sequence flanking stem-loop I which contains the pRNA initiation site and another located on the 5' sequence flanking stem-loop III
PMCID:178564
PMID: 8955285
ISSN: 0021-9193
CID: 12459

Studies of the functional topography of the catalytic center of Escherichia coli primase

Mustaev AA; Godson GN
The catalytic center of E. coli primase (581 amino acids) was identified by using, in the G4oric single-strand binding protein (SSB) primer RNA (pRNA) synthesis system, ATP and AMP derivatives, which were modified on the 5' side with reactive groups that can be cross-linked to the ATP binding site plus [alpha-32P]GTP. The position of the covalently attached 32P-labeled dinucleotide was mapped by chemical and enzymatic cleavage of labeled wild type and deletion mutants of primase. The catalytic center involves one of the Lys residues Lys-211, Lys-229, and Lys-241. The ATP binding site is preformed in primase, and the cross-linked ATP residue can be elongated to a 5-nucleotide limit, which implies significant stretching of the catalytic center during pRNA synthesis. His-43 close to the N terminus in a proposed zinc finger and Lys-528 near the C terminus were also cross-linked to ATP residues in the primase ATP binding site, suggesting that these regions are topographically close to the catalytic center during pRNA synthesis. When cross-linking was performed on the preformed primase/SSB/G4oric complex with long arm reagents (12-15 A), SSB was also labeled, indicating a close proximity to the site of pRNA synthesis
PMID: 7541046
ISSN: 0021-9258
CID: 17299

Biochemical characterization of Escherichia coli temperature-sensitive dnaB mutants dnaB8, dnaB252, dnaB70, dnaB43, and dnaB454

Saluja D; Godson GN
By use of PCR, the dnaB genes from the classical temperature-sensitive dnaB mutants PC8 (dnaB8), RS162 (dnaB252), CR34/454 (dnaB454), HfrH165/70 (dnaB70), and CR34/43 (dnaB43) were isolated. The mutant genes were sequenced, and single amino acid changes were identified in all cases. The mutant DnaB proteins were overexpressed in BL21 (DE3) cells by using the T7 based pET-11c expression vector system. The purified proteins were compared in regard to activities in the general priming reaction of primer RNA synthesis (with primase and single-stranded DNA [ssDNA] as the template), ATPase activity, and helicase activity at permissive (30 degrees C) and nonpermissive (42 degrees C) temperatures. The DnaB252 mutation is at amino acid 299 (Gly to Asp), and in all in vitro assays the DnaB252 protein was as active as the wild-type DnaB protein at both 30 and 42 degrees C. This region of the DnaB protein is believed to be involved in interaction with the DnaC protein. The dnaB8, dnaB454, and dnaB43 mutations, although independently isolated in different laboratories, were all at the same site, changing amino acid 130 from Ala to Val. This mutation is in the hinge region of the DnaB protein domains and probably induces a temperature-sensitive conformational change. These mutants have negligible primer RNA synthesis, ATPase activity, and helicase activity at the nonpermissive temperature. DnaB70 has a mutation at amino acid 242 (Met to Ile), which is close to the proposed ATP binding site. At 30 degrees C this mutant protein has a low level of ATPase activity (approximately 25% of that of the wild type) which is not affected by high temperature.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID:176710
PMID: 7532169
ISSN: 0021-9193
CID: 6740

INTERACTION OF ESCHERICHIA-COLI PRIMASE WITH ITS SUBSTRATE IN THE PRIMASE SSB G4ORIC PRNA SYNTHESIS SYSTEM [Meeting Abstract]

SUN, WL; GODSON, GN
ISI:A1995QQ99700443
ISSN: 0730-2312
CID: 87349