Try a new search

Format these results:

Searched for:

person:heguya01

in-biosketch:yes

Total Results:

267


The bone marrow microenvironment at single-cell resolution

Tikhonova, Anastasia N; Dolgalev, Igor; Hu, Hai; Sivaraj, Kishor K; Hoxha, Edlira; Cuesta-Domínguez, Álvaro; Pinho, Sandra; Akhmetzyanova, Ilseyar; Gao, Jie; Witkowski, Matthew; Guillamot, Maria; Gutkin, Michael C; Zhang, Yutong; Marier, Christian; Diefenbach, Catherine; Kousteni, Stavroula; Heguy, Adriana; Zhong, Hua; Fooksman, David R; Butler, Jason M; Economides, Aris; Frenette, Paul S; Adams, Ralf H; Satija, Rahul; Tsirigos, Aristotelis; Aifantis, Iannis
The bone marrow microenvironment has a key role in regulating haematopoiesis, but its molecular complexity and response to stress are incompletely understood. Here we map the transcriptional landscape of mouse bone marrow vascular, perivascular and osteoblast cell populations at single-cell resolution, both at homeostasis and under conditions of stress-induced haematopoiesis. This analysis revealed previously unappreciated levels of cellular heterogeneity within the bone marrow niche and resolved cellular sources of pro-haematopoietic growth factors, chemokines and membrane-bound ligands. Our studies demonstrate a considerable transcriptional remodelling of niche elements under stress conditions, including an adipocytic skewing of perivascular cells. Among the stress-induced changes, we observed that vascular Notch delta-like ligands (encoded by Dll1 and Dll4) were downregulated. In the absence of vascular Dll4, haematopoietic stem cells prematurely induced a myeloid transcriptional program. These findings refine our understanding of the cellular architecture of the bone marrow niche, reveal a dynamic and heterogeneous molecular landscape that is highly sensitive to stress and illustrate the utility of single-cell transcriptomic data in evaluating the regulation of haematopoiesis by discrete niche populations.
PMID: 30971824
ISSN: 1476-4687
CID: 3809302

The Ancient Origins of Neural Substrates for Land Walking

Jung, Heekyung; Baek, Myungin; D'Elia, Kristen P; Boisvert, Catherine; Currie, Peter D; Tay, Boon-Hui; Venkatesh, Byrappa; Brown, Stuart M; Heguy, Adriana; Schoppik, David; Dasen, Jeremy S
Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.
PMCID:5808577
PMID: 29425489
ISSN: 1097-4172
CID: 2948352

Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond

Mitchell, Leslie A; Wang, Ann; Stracquadanio, Giovanni; Kuang, Zheng; Wang, Xuya; Yang, Kun; Richardson, Sarah; Martin, J Andrew; Zhao, Yu; Walker, Roy; Luo, Yisha; Dai, Hongjiu; Dong, Kang; Tang, Zuojian; Yang, Yanling; Cai, Yizhi; Heguy, Adriana; Ueberheide, Beatrix; Fenyo, David; Dai, Junbiao; Bader, Joel S; Boeke, Jef D
We describe design, rapid assembly, and characterization of synthetic yeast Sc2.0 chromosome VI (synVI). A mitochondrial defect in the synVI strain mapped to synonymous coding changes within PRE4 (YFR050C), encoding an essential proteasome subunit; Sc2.0 coding changes reduced Pre4 protein accumulation by half. Completing Sc2.0 specifies consolidation of 16 synthetic chromosomes into a single strain. We investigated phenotypic, transcriptional, and proteomewide consequences of Sc2.0 chromosome consolidation in poly-synthetic strains. Another "bug" was discovered through proteomic analysis, associated with alteration of the HIS2 transcription start due to transfer RNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-synthetic strain "omics" analyses. This work sets the stage for completion of a designer, synthetic eukaryotic genome.
PMID: 28280154
ISSN: 1095-9203
CID: 2476892

Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms

Diamond, Eli L; Durham, Benjamin H; Haroche, Julien; Yao, Zhan; Ma, Jing; Parikh, Sameer A; Wang, Zhaoming; Choi, John; Kim, Eunhee; Cohen-Aubart, Fleur; Lee, Stanley Chun-Wei; Gao, Yijun; Micol, Jean-Baptiste; Campbell, Patrick; Walsh, Michael P; Sylvester, Brooke; Dolgalev, Igor; Aminova, Olga; Heguy, Adriana; Zappile, Paul; Nakitandwe, Joy; Ganzel, Chezi; Dalton, James D; Ellison, David W; Estrada-Veras, Juvianee; Lacouture, Mario; Gahl, William A; Stephens, Philip J; Miller, Vincent A; Ross, Jeffrey S; Ali, Siraj M; Briggs, Samuel R; Fasan, Omotayo; Block, Jared; Heritier, Sebastien; Donadieu, Jean; Solit, David B; Hyman, David M; Baselga, Jose; Janku, Filip; Taylor, Barry S; Park, Christopher Y; Amoura, Zahir; Dogan, Ahmet; Emile, Jean-Francois; Rosen, Neal; Gruber, Tanja A; Abdel-Wahab, Omar
Histiocytic neoplasms are clonal, hematopoietic disorders characterized by an accumulation of abnormal, monocyte-derived dendritic cells or macrophages in Langerhans Cell (LCH) and non-Langerhans (non-LCH) histiocytoses, respectively. The discovery of BRAFV600E mutations in ~50% of these patients provided the first molecular therapeutic target in histiocytosis. However, recurrent driving mutations in the majority of BRAFV600E-wildtype, non-LCH patients are unknown, and recurrent cooperating mutations in non-MAP kinase pathways are undefined for the histiocytic neoplasms. Through combined whole exome and transcriptome sequencing, we identified recurrent kinase fusions involving BRAF, ALK, and NTRK1, as well as recurrent, activating MAP2K1 and ARAF mutations in BRAFV600E-wildtype, non-LCH patients. In addition to MAP kinase pathway lesions, recurrently altered genes involving diverse cellular pathways were identified. Treatment of MAP2K1- and ARAF-mutated, non-LCH patients using MEK and RAF inhibitors, respectively, resulted in clinical efficacy demonstrating the importance of detecting and targeting diverse kinase alterations in these disorders.
PMCID:4744547
PMID: 26566875
ISSN: 2159-8290
CID: 1834902

Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling

Danussi, Carla; Bose, Promita; Parthasarathy, Prasanna T; Silberman, Pedro C; Van Arnam, John S; Vitucci, Mark; Tang, Oliver Y; Heguy, Adriana; Wang, Yuxiang; Chan, Timothy A; Riggins, Gregory J; Sulman, Erik P; Lang, Frederick; Creighton, Chad J; Deneen, Benjamin; Miller, C Ryan; Picketts, David J; Kannan, Kasthuri; Huse, Jason T
Mutational inactivation of the SWI/SNF chromatin regulator ATRX occurs frequently in gliomas, the most common primary brain tumors. Whether and how ATRX deficiency promotes oncogenesis by epigenomic dysregulation remains unclear, despite its recent implication in both genomic instability and telomere dysfunction. Here we report that Atrx loss recapitulates characteristic disease phenotypes and molecular features in putative glioma cells of origin, inducing cellular motility although also shifting differentiation state and potential toward an astrocytic rather than neuronal histiogenic profile. Moreover, Atrx deficiency drives widespread shifts in chromatin accessibility, histone composition, and transcription in a distribution almost entirely restricted to genomic sites normally bound by the protein. Finally, direct gene targets of Atrx that mediate specific Atrx-deficient phenotypes in vitro exhibit similarly selective misexpression in ATRX-mutant human gliomas. These findings demonstrate that ATRX deficiency and its epigenomic sequelae are sufficient to induce disease-defining oncogenic phenotypes in appropriate cellular and molecular contexts.
PMCID:5849741
PMID: 29535300
ISSN: 2041-1723
CID: 2992712

Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma

Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke; Wang, Shiyang; Stafford, James M; Serrano, Jonathan; Heguy, Adriana; Ray, Karina; Faustin, Arline; Aminova, Olga; Dolgalev, Igor; Stapleton, Stacie L; Zagzag, David; Chiriboga, Luis; Gardner, Sharon L; Wisoff, Jeffrey H; Golfinos, John G; Capper, David; Hovestadt, Volker; Rosenblum, Marc K; Placantonakis, Dimitris G; LeBoeuf, Sarah E; Papagiannakopoulos, Thales Y; Chavez, Lukas; Ahsan, Sama; Eberhart, Charles G; Pfister, Stefan M; Jones, David T W; Karajannis, Matthias A
Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. Here, we analyzed pediatric and adult pineoblastoma samples (n = 23) using a combination of genome-wide DNA methylation profiling and whole-exome sequencing or whole-genome sequencing. Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower-grade pineal tumors and normal pineal gland. Recurrent variants were found in genes involved in PKA- and NF-κB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expresion of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain.
PMCID:6054684
PMID: 30030436
ISSN: 2041-1723
CID: 3202352

Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal

Azzouz, Doua; Omarbekova, Aidana; Heguy, Adriana; Schwudke, Dominik; Gisch, Nicolas; Rovin, Brad H; Caricchio, Roberto; Buyon, Jill P; Alekseyenko, Alexander V; Silverman, Gregg J
BACKGROUND/PURPOSE/OBJECTIVE:To search for a transmissible agent involved in lupus pathogenesis, we investigated the faecal microbiota of patients with systemic lupus erythematosus (SLE) for candidate pathobiont(s) and evaluated them for special relationships with host immunity. METHODS:In a cross-sectional discovery cohort, matched blood and faecal samples from 61 female patients with SLE were obtained. Faecal 16 S rRNA analyses were performed, and sera profiled for antibacterial and autoantibody responses, with findings validated in two independent lupus cohorts. RESULTS:strain-restricted antibodies were detected in those with active nephritis (including Class III and IV) in the discovery cohort, with findings validated in two independent cohorts. CONCLUSION/CONCLUSIONS:These findings suggest a novel paradigm in which specific strains of a gut commensal may contribute to the immune pathogenesis of lupus nephritis.
PMID: 30782585
ISSN: 1468-2060
CID: 3686132

Radiotherapy induces responses of lung cancer to CTLA-4 blockade

Formenti, Silvia C; Rudqvist, Nils-Petter; Golden, Encouse; Cooper, Benjamin; Wennerberg, Erik; Lhuillier, Claire; Vanpouille-Box, Claire; Friedman, Kent; Ferrari de Andrade, Lucas; Wucherpfennig, Kai W; Heguy, Adriana; Imai, Naoko; Gnjatic, Sacha; Emerson, Ryan O; Zhou, Xi Kathy; Zhang, Tuo; Chachoua, Abraham; Demaria, Sandra
Focal radiation therapy enhances systemic responses to anti-CTLA-4 antibodies in preclinical studies and in some patients with melanoma1-3, but its efficacy in inducing systemic responses (abscopal responses) against tumors unresponsive to CTLA-4 blockade remained uncertain. Radiation therapy promotes the activation of anti-tumor T cells, an effect dependent on type I interferon induction in the irradiated tumor4-6. The latter is essential for achieving abscopal responses in murine cancers6. The mechanisms underlying abscopal responses in patients treated with radiation therapy and CTLA-4 blockade remain unclear. Here we report that radiation therapy and CTLA-4 blockade induced systemic anti-tumor T cells in chemo-refractory metastatic non-small-cell lung cancer (NSCLC), where anti-CTLA-4 antibodies had failed to demonstrate significant efficacy alone or in combination with chemotherapy7,8. Objective responses were observed in 18% of enrolled patients, and 31% had disease control. Increased serum interferon-β after radiation and early dynamic changes of blood T cell clones were the strongest response predictors, confirming preclinical mechanistic data. Functional analysis in one responding patient showed the rapid in vivo expansion of CD8 T cells recognizing a neoantigen encoded in a gene upregulated by radiation, supporting the hypothesis that one explanation for the abscopal response is radiation-induced exposure of immunogenic mutations to the immune system.
PMID: 30397353
ISSN: 1546-170x
CID: 3455792

Generation of quality-controlled SARS-CoV-2 variant stocks

de Vries, Maren; Ciabattoni, Grace O; Rodriguez-Rodriguez, Bruno A; Crosse, Keaton M; Papandrea, Dominick; Samanovic, Marie I; Dimartino, Dacia; Marier, Christian; Mulligan, Mark J; Heguy, Adriana; Desvignes, Ludovic; Duerr, Ralf; Dittmann, Meike
One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.
PMID: 37833423
ISSN: 1750-2799
CID: 5604402

Inflammation in the tumor-adjacent lung as a predictor of clinical outcome in lung adenocarcinoma

Dolgalev, Igor; Zhou, Hua; Murrell, Nina; Le, Hortense; Sakellaropoulos, Theodore; Coudray, Nicolas; Zhu, Kelsey; Vasudevaraja, Varshini; Yeaton, Anna; Goparaju, Chandra; Li, Yonghua; Sulaiman, Imran; Tsay, Jun-Chieh J; Meyn, Peter; Mohamed, Hussein; Sydney, Iris; Shiomi, Tomoe; Ramaswami, Sitharam; Narula, Navneet; Kulicke, Ruth; Davis, Fred P; Stransky, Nicolas; Smolen, Gromoslaw A; Cheng, Wei-Yi; Cai, James; Punekar, Salman; Velcheti, Vamsidhar; Sterman, Daniel H; Poirier, J T; Neel, Ben; Wong, Kwok-Kin; Chiriboga, Luis; Heguy, Adriana; Papagiannakopoulos, Thales; Nadorp, Bettina; Snuderl, Matija; Segal, Leopoldo N; Moreira, Andre L; Pass, Harvey I; Tsirigos, Aristotelis
Approximately 30% of early-stage lung adenocarcinoma patients present with disease progression after successful surgical resection. Despite efforts of mapping the genetic landscape, there has been limited success in discovering predictive biomarkers of disease outcomes. Here we performed a systematic multi-omic assessment of 143 tumors and matched tumor-adjacent, histologically-normal lung tissue with long-term patient follow-up. Through histologic, mutational, and transcriptomic profiling of tumor and adjacent-normal tissue, we identified an inflammatory gene signature in tumor-adjacent tissue as the strongest clinical predictor of disease progression. Single-cell transcriptomic analysis demonstrated the progression-associated inflammatory signature was expressed in both immune and non-immune cells, and cell type-specific profiling in monocytes further improved outcome predictions. Additional analyses of tumor-adjacent transcriptomic data from The Cancer Genome Atlas validated the association of the inflammatory signature with worse outcomes across cancers. Collectively, our study suggests that molecular profiling of tumor-adjacent tissue can identify patients at high risk for disease progression.
PMCID:10632519
PMID: 37938580
ISSN: 2041-1723
CID: 5609852