Try a new search

Format these results:

Searched for:

person:huangt03

in-biosketch:yes

Total Results:

53


USP1-trapping lesions as a source of DNA replication stress and genomic instability

Coleman, Kate E; Yin, Yandong; Lui, Sarah Kit Leng; Keegan, Sarah; Fenyo, David; Smith, Duncan J; Rothenberg, Eli; Huang, Tony T
The deubiquitinase USP1 is a critical regulator of genome integrity through the deubiquitylation of Fanconi Anemia proteins and the DNA replication processivity factor, proliferating cell nuclear antigen (PCNA). Uniquely, following UV irradiation, USP1 self-inactivates through autocleavage, which enables its own degradation and in turn, upregulates PCNA monoubiquitylation. However, the functional role for this autocleavage event during physiological conditions remains elusive. Herein, we discover that cells harboring an autocleavage-defective USP1 mutant, while still able to robustly deubiquitylate PCNA, experience more replication fork-stalling and premature fork termination events. Using super-resolution microscopy and live-cell single-molecule tracking, we show that these defects are related to the inability of this USP1 mutant to be properly recycled from sites of active DNA synthesis, resulting in replication-associated lesions. Furthermore, we find that the removal of USP1 molecules from DNA is facilitated by the DNA-dependent metalloprotease Spartan to counteract the cytotoxicity caused by "USP1-trapping". We propose a utility of USP1 inhibitors in cancer therapy based on their ability to induce USP1-trapping lesions and consequent replication stress and genomic instability in cancer cells, similar to how non-covalent DNA-protein crosslinks cause cytotoxicity by imposing steric hindrances upon proteins involved in DNA transactions.
PMCID:8975806
PMID: 35365626
ISSN: 2041-1723
CID: 5201472

Single-cell transcriptomics identifies Gadd45b as a regulator of herpesvirus-reactivating neurons

Hu, Hui-Lan; Srinivas, Kalanghad P; Wang, Shuoshuo; Chao, Moses V; Lionnet, Timothee; Mohr, Ian; Wilson, Angus C; Depledge, Daniel P; Huang, Tony T
Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.
PMID: 34842321
ISSN: 1469-3178
CID: 5065412

A molecular sensor determines the ubiquitin substrate specificity of SARS-CoV-2 papain-like protease

Patchett, Stephanie; Lv, Zongyang; Rut, Wioletta; Békés, Miklos; Drag, Marcin; Olsen, Shaun K; Huang, Tony T
The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.
PMCID:8423903
PMID: 34547223
ISSN: 2211-1247
CID: 5012592

Monitoring genome-wide replication fork directionality by Okazaki fragment sequencing in mammalian cells

Kit Leng Lui, Sarah; Keegan, Sarah; Tonzi, Peter; Kahli, Malik; Chen, Yu-Hung; Chalhoub, Noor; Coleman, Kate E; Fenyo, David; Smith, Duncan J; Huang, Tony T
The ability to monitor DNA replication fork directionality at the genome-wide scale is paramount for a greater understanding of how genetic and environmental perturbations can impact replication dynamics in human cells. Here we describe a detailed protocol for isolating and sequencing Okazaki fragments from asynchronously growing mammalian cells, termed Okazaki fragment sequencing (Ok-seq), for the purpose of quantitatively determining replication initiation and termination frequencies around specific genomic loci by meta-analyses. Briefly, cells are pulsed with 5-ethynyl-2'-deoxyuridine (EdU) to label newly synthesized DNA, and collected for DNA extraction. After size fractionation on a sucrose gradient, Okazaki fragments are concentrated and purified before click chemistry is used to tag the EdU label with a biotin conjugate that is cleavable under mild conditions. Biotinylated Okazaki fragments are then captured on streptavidin beads and ligated to Illumina adapters before library preparation for Illumina sequencing. The use of Ok-seq to interrogate genome-wide replication fork initiation and termination efficiencies can be applied to all unperturbed, asynchronously growing mammalian cells or under conditions of replication stress, and the assay can be performed in less than 2 weeks.
PMID: 33442052
ISSN: 1750-2799
CID: 4747072

Transcription shapes DNA replication initiation and termination in human cells

Chen, Yu-Hung; Keegan, Sarah; Kahli, Malik; Tonzi, Peter; Fenyö, David; Huang, Tony T; Smith, Duncan J
Although DNA replication is a fundamental aspect of biology, it is not known what determines where DNA replication starts and stops in the human genome. We directly identified and quantitatively compared sites of replication initiation and termination in untransformed human cells. We found that replication preferentially initiates at the transcription start site of genes occupied by high levels of RNA polymerase II, and terminates at their polyadenylation sites, thereby ensuring global co-directionality of transcription and replication, particularly at gene 5' ends. During replication stress, replication initiation is stimulated downstream of genes and termination is redistributed to gene bodies; this globally reorients replication relative to transcription around gene 3' ends. These data suggest that replication initiation and termination are coupled to transcription in human cells, and propose a model for the impact of replication stress on genome integrity.
PMID: 30598550
ISSN: 1545-9985
CID: 3563352

Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug design

Rut, Wioletta; Lv, Zongyang; Zmudzinski, Mikolaj; Patchett, Stephanie; Nayak, Digant; Snipas, Scott J; El Oualid, Farid; Huang, Tony T; Bekes, Miklos; Drag, Marcin; Olsen, Shaun K
Viral papain-like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library and performed comprehensive activity profiling of SARS-CoV-2 PLpro. On the scaffold of the best hits from positional scanning, we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro. We determined crystal structures of two of these inhibitors in complex with SARS-CoV-2 PLpro that reveals their inhibitory mechanisms and provides a molecular basis for the observed substrate specificity profiles. Last, we demonstrate that SARS-CoV-2 PLpro harbors deISGylating activity similar to SARSCoV-1 PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Together, this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repurposing.
PMID: 33067239
ISSN: 2375-2548
CID: 4650732

TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency

Hu, Hui-Lan; Shiflett, Lora A; Kobayashi, Mariko; Chao, Moses V; Wilson, Angus C; Mohr, Ian; Huang, Tony T
The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.
PMID: 30930055
ISSN: 1097-4164
CID: 3783782

Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery

Tonzi, Peter; Yin, Yandong; Lee, Chelsea Wei Ting; Rothenberg, Eli; Huang, Tony T
DNA replication stress is often defined by the slowing or stalling of replication fork progression leading to local or global DNA synthesis inhibition. Failure to resolve replication stress in a timely manner contribute towards cell cycle defects, genome instability and human disease; however, the mechanism for fork recovery remains poorly defined. Here we show that the translesion DNA polymerase (Pol) kappa, a DinB orthologue, has a unique role in both protecting and restarting stalled replication forks under conditions of nucleotide deprivation. Importantly, Pol kappa-mediated DNA synthesis during hydroxyurea (HU)-dependent fork restart is regulated by both the Fanconi Anemia (FA) pathway and PCNA polyubiquitination. Loss of Pol kappa prevents timely rescue of stalled replication forks, leading to replication-associated genomic instability, and a p53-dependent cell cycle defect. Taken together, our results identify a previously unanticipated role for Pol kappa in promoting DNA synthesis and replication stress recovery at sites of stalled forks.
PMID: 30422114
ISSN: 2050-084x
CID: 3456962

Transcription-Replication Conflicts as a Source of Genome Instability

Goehring, Liana; Huang, Tony T; Smith, Duncan J
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
PMID: 37552891
ISSN: 1545-2948
CID: 5590972

Confronting the loss of trophic support

Hu, Hui-Lan; Khatri, Latika; Santacruz, Marilyn; Church, Emily; Moore, Christopher; Huang, Tony T; Chao, Moses V
Classic experiments with peripheral sympathetic neurons established an absolute dependence upon NGF for survival. A forgotten problem is how these neurons become resistant to deprivation of trophic factors. The question is whether and how neurons can survive in the absence of trophic support. However, the mechanism is not understood how neurons switch their phenotype to lose their dependence on trophic factors, such as NGF and BDNF. Here, we approach the problem by considering the requirements for trophic support of peripheral sympathetic neurons and hippocampal neurons from the central nervous system. We developed cellular assays to assess trophic factor dependency for sympathetic and hippocampal neurons and identified factors that rescue neurons in the absence of trophic support. They include enhanced expression of a subunit of the NGF receptor (Neurotrophin Receptor Homolog, NRH) in sympathetic neurons and an increase of the expression of the glucocorticoid receptor in hippocampal neurons. The results are significant since levels and activity of trophic factors are responsible for many neuropsychiatric conditions. Resistance of neurons to trophic factor deprivation may be relevant to the underlying basis of longevity, as well as an important element in preventing neurodegeneration.
PMCID:10338843
PMID: 37456526
ISSN: 1662-5099
CID: 5535402