Try a new search

Format these results:

Searched for:

person:kanshe01

in-biosketch:yes

Total Results:

29


Phosphoproteomic analysis identifies supervillin as an ERK3 substrate regulating cytokinesis and cell ploidy

Javary, Joaquim; Goupil, Eugénie; Soulez, Mathilde; Kanshin, Evgeny; Bouchard, Antoine; Seternes, Ole-Morten; Thibault, Pierre; Labbé, Jean-Claude; Meloche, Sylvain
Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions. Detailed validation of one candidate substrate identified the gelsolin/villin family member supervillin (SVIL) as a bona fide ERK3 substrate. We show that ERK3 phosphorylates SVIL on Ser245 to regulate myosin II activation and cytokinesis completion in dividing cells. Depletion of SVIL or ERK3 leads to increased cytokinesis failure and multinucleation, a phenotype rescued by wild type SVIL but not by the non-phosphorylatable S245A mutant. Our results unveil a new function of the atypical MAP kinase ERK3 in cell division and the regulation of cell ploidy.
PMID: 36576983
ISSN: 1097-4652
CID: 5409632

Similar brain proteomic signatures in Alzheimer's disease and epilepsy

Leitner, Dominique; Pires, Geoffrey; Kavanagh, Tomas; Kanshin, Evgeny; Askenazi, Manor; Ueberheide, Beatrix; Devinsky, Orrin; Wisniewski, Thomas; Drummond, Eleanor
The prevalence of epilepsy is increased among Alzheimer's Disease (AD) patients and cognitive impairment is common among people with epilepsy. Epilepsy and AD are linked but the shared pathophysiological changes remain poorly defined. We aim to identify protein differences associated with epilepsy and AD using published proteomics datasets. We observed a highly significant overlap in protein differences in epilepsy and AD: 89% (689/777) of proteins altered in the hippocampus of epilepsy patients were significantly altered in advanced AD. Of the proteins altered in both epilepsy and AD, 340 were altered in the same direction, while 216 proteins were altered in the opposite direction. Synapse and mitochondrial proteins were markedly decreased in epilepsy and AD, suggesting common disease mechanisms. In contrast, ribosome proteins were increased in epilepsy but decreased in AD. Notably, many of the proteins altered in epilepsy interact with tau or are regulated by tau expression. This suggests that tau likely mediates common protein changes in epilepsy and AD. Immunohistochemistry for Aβ and multiple phosphorylated tau species (pTau396/404, pTau217, pTau231) showed a trend for increased intraneuronal pTau217 and pTau231 but no phosphorylated tau aggregates or amyloid plaques in epilepsy hippocampal sections. Our results provide insights into common mechanisms in epilepsy and AD and highlights the potential role of tau in mediating common pathological protein changes in epilepsy and AD.
PMCID:10827928
PMID: 38289539
ISSN: 1432-0533
CID: 5627492

Mitochondrial DNA breaks activate an integrated stress response to reestablish homeostasis

Fu, Yi; Sacco, Olivia; DeBitetto, Emily; Kanshin, Evgeny; Ueberheide, Beatrix; Sfeir, Agnel
Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure. Intriguingly, mtDSBs triggered the integrated stress response (ISR) via the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by DELE1 and heme-regulated eIF2α kinase (HRI). When ISR was inhibited, the cells experienced intensified mitochondrial defects and slower mtDNA recovery post-breakage. Lastly, through proteomics, we identified ATAD3A-a membrane-bound protein interacting with nucleoids-as potentially pivotal in relaying signals from impaired genomes to the inner mitochondrial membrane. In summary, our study delineates the cascade connecting damaged mitochondrial genomes to the cytoplasm and highlights the significance of the ISR in maintaining mitochondrial homeostasis amid genome instability.
PMID: 37832546
ISSN: 1097-4164
CID: 5604282

Antibody responses to dietary antigens are accompanied by specific plasma cells in the infant thymus

Cordero, Hector; Hess, Jacob; Nitschki, Elio; Kanshin, Evgeny; Roy, Poulomi; Shihab, Ronzon; Kalfa, David M; Bacha, Emile A; Ueberheide, Beatrix; Zorn, Emmanuel
BACKGROUND:Human infants develop IgG responses to dietary antigens during the first 2 years of life. Yet, the source of these antibodies is unclear. In previous studies we reported on the thymus as a unique functional niche for plasma cells (PCs) specific to environmental antigens. OBJECTIVE:We sought to examine whether PCs specific to dietary antigens are detected in the infant thymus. METHODS:We tested IgG reactivity to 112 food antigens and allergens in the serum of 20 neonates and infants using microarrays. The presence of PC-secreting IgG specific to the most prominent antigens was then assessed among thymocytes in the same cohort. Using an LC-MS proteomics approach, we looked for traces of these antigens in the thymus. RESULTS:Our studies first confirmed that cow's milk proteins are prevalent targets of serum IgG in early life. Subjects with the highest serum IgG titers to cow's milk proteins also harbored IgG-producing PCs specific to the same antigens in the thymic niche. Furthermore, we detected multiple peptide fragments of cow's milk antigens in the thymus. Lastly, we verified that both serum IgG and IgG secreted by thymic PCs recognized the peptide epitopes found in the thymus. CONCLUSIONS:Our studies reveal the presence of antibody-secreting PCs specific to common dietary antigens in the infant thymus. The presence of these antigens in the thymus suggested that activation and differentiation of specific PCs occurred in this organ. Further studies are now warranted to evaluate the possible implication of these cells in tolerance to dietary antigens.
PMID: 37406823
ISSN: 1097-6825
CID: 5539242

Metabolomic, proteomic, and transcriptomic changes in adults with epilepsy on modified Atkins diet

Leitner, Dominique F; Siu, Yik; Korman, Aryeh; Lin, Ziyan; Kanshin, Evgeny; Friedman, Daniel; Devore, Sasha; Ueberheide, Beatrix; Tsirigos, Aristotelis; Jones, Drew R; Wisniewski, Thomas; Devinsky, Orrin
OBJECTIVE:High-fat and low-carbohydrate diets can reduce seizure frequency in some treatment-resistant epilepsy patients, including the more flexible modified Atkins diet (MAD), which is more palatable, mimicking fasting and inducing high ketone body levels. Low-carbohydrate diets may shift brain energy production, particularly impacting neuron- and astrocyte-linked metabolism. METHODS:We evaluated the effect of short-term MAD on molecular mechanisms in adult epilepsy patients from surgical brain tissue and plasma compared to control participants consuming a nonmodified higher carbohydrate diet (n = 6 MAD, mean age = 43.7 years, range = 21-53, diet for average 10 days; n = 10 control, mean age = 41.9 years, range = 28-64). RESULTS: = .48). Brain proteomics and RNAseq identified few differences, including 2.75-fold increased hippocampal MT-ND3 and trends (p < .01, false discovery rate > 5%) in hippocampal nicotinamide adenine dinucleotide (NADH)-related signaling pathways (activated oxidative phosphorylation and inhibited sirtuin signaling). SIGNIFICANCE/CONCLUSIONS:Short-term MAD was associated with metabolic differences in plasma and resected epilepsy brain tissue when compared to control participants, in combination with trending expression changes observed in hippocampal NADH-related signaling pathways. Future studies should evaluate how brain molecular mechanisms are altered with long-term MAD in a larger cohort of epilepsy patients, with correlations to seizure frequency, epilepsy syndrome, and other clinical variables. [Clinicaltrials.gov NCT02565966.].
PMID: 36775798
ISSN: 1528-1167
CID: 5448012

Localized proteomic differences in the choroid plexus of Alzheimer's disease and epilepsy patients

Leitner, Dominique F.; Kanshin, Evgeny; Faustin, Arline; Thierry, Manon; Friedman, Daniel; Devore, Sasha; Ueberheide, Beatrix; Devinsky, Orrin; Wisniewski, Thomas
Introduction: Alzheimer's disease (AD) and epilepsy are reciprocally related. Among sporadic AD patients, clinical seizures occur in 10"“22% and subclinical epileptiform abnormalities occur in 22"“54%. Cognitive deficits, especially short-term memory impairments, occur in most epilepsy patients. Common neurophysiological and molecular mechanisms occur in AD and epilepsy. The choroid plexus undergoes pathological changes in aging, AD, and epilepsy, including decreased CSF turnover, amyloid beta (Aβ), and tau accumulation due to impaired clearance and disrupted CSF amino acid homeostasis. This pathology may contribute to synaptic dysfunction in AD and epilepsy. Methods: We evaluated control (n = 8), severe AD (n = 8; A3, B3, C3 neuropathology), and epilepsy autopsy cases (n = 12) using laser capture microdissection (LCM) followed by label-free quantitative mass spectrometry on the choroid plexus adjacent to the hippocampus at the lateral geniculate nucleus level. Results: Proteomics identified 2,459 proteins in the choroid plexus. At a 5% false discovery rate (FDR), 616 proteins were differentially expressed in AD vs. control, 1 protein in epilepsy vs. control, and 438 proteins in AD vs. epilepsy. There was more variability in the epilepsy group across syndromes. The top 20 signaling pathways associated with differentially expressed proteins in AD vs. control included cell metabolism pathways; activated fatty acid beta-oxidation (p = 2.00 x 10−7, z = 3.00), and inhibited glycolysis (p = 1.00 x 10−12, z = −3.46). For AD vs. epilepsy, the altered pathways included cell metabolism pathways, activated complement system (p = 5.62 x 10−5, z = 2.00), and pathogen-induced cytokine storm (p = 2.19 x 10−2, z = 3.61). Of the 617 altered proteins in AD and epilepsy vs. controls, 497 (81%) were positively correlated (p < 0.0001, R2 = 0.27). Discussion: We found altered signaling pathways in the choroid plexus of severe AD cases and many correlated changes in the protein expression of cell metabolism pathways in AD and epilepsy cases. The shared molecular mechanisms should be investigated further to distinguish primary pathogenic changes from the secondary ones. These mechanisms could inform novel therapeutic strategies to prevent disease progression or restore normal function. A focus on dual-diagnosed AD/epilepsy cases, specific epilepsy syndromes, such as temporal lobe epilepsy, and changes across different severity levels in AD and epilepsy would add to our understanding.
SCOPUS:85167525209
ISSN: 1664-2295
CID: 5619802

Brain Molecular Mechanisms in Rasmussen Encephalitis

Leitner, Dominique F; Lin, Ziyan; Sawaged, Zacharia; Kanshin, Evgeny; Friedman, Daniel; Devore, Sasha; Ueberheide, Beatrix; Chang, Julia W; Mathern, Gary W; Anink, Jasper J; Aronica, Eleonora; Wisniewski, Thomas; Devinsky, Orrin
OBJECTIVE:Identify molecular mechanisms in brain tissue of Rasmussen encephalitis (RE) when compared to people with non-RE epilepsy (PWE) and control cases using whole exome sequencing (WES), RNAseq, and proteomics. METHODS:Frozen brain tissue (ages 2-19 years) was obtained from control autopsy (n=14), surgical PWE (n=10), and surgical RE cases (n=27). We evaluated WES variants in RE associated with epilepsy, seizures, RE, and human leukocyte antigens (HLAs). Differential expression was evaluated by RNAseq (adjusted p<0.05) and label-free quantitative mass spectrometry (false discovery rate<5%) in the three groups. RESULTS:, z=5.61). Proteomics detected fewer altered targets. SIGNIFICANCE/CONCLUSIONS:In RE, we identified activated immune signaling pathways and immune cell type annotation enrichment that suggest roles of the innate and adaptive immune responses, as well as HLA variants that may increase vulnerability to RE. Follow up studies could evaluate cell type density and subregional localization associated with top targets, clinical history (neuropathology, disease duration), and whether modulating crosstalk between dendritic and natural killer cells may limit disease progression.
PMID: 36336987
ISSN: 1528-1167
CID: 5356972

Proteomic differences in hippocampus and cortex of sudden unexplained death in childhood

Leitner, Dominique F; William, Christopher; Faustin, Arline; Askenazi, Manor; Kanshin, Evgeny; Snuderl, Matija; McGuone, Declan; Wisniewski, Thomas; Ueberheide, Beatrix; Gould, Laura; Devinsky, Orrin
Sudden unexplained death in childhood (SUDC) is death of a child over 1 year of age that is unexplained after review of clinical history, circumstances of death, and complete autopsy with ancillary testing. Multiple etiologies may cause SUDC. SUDC and sudden unexpected death in epilepsy (SUDEP) share clinical and pathological features, suggesting some similarities in mechanism of death and possible abnormalities in hippocampus and cortex. To identify molecular signaling pathways, we performed label-free quantitative mass spectrometry on microdissected frontal cortex, hippocampal dentate gyrus (DG), and cornu ammonis (CA1-3) in SUDC (n = 19) and pediatric control cases (n = 19) with an explained cause of death. At a 5% false discovery rate (FDR), we found differential expression of 660 proteins in frontal cortex, 170 in DG, and 57 in CA1-3. Pathway analysis of altered proteins identified top signaling pathways associated with activated oxidative phosphorylation (p = 6.3 × 10-15, z = 4.08) and inhibited EIF2 signaling (p = 2.0 × 10-21, z = - 2.56) in frontal cortex, and activated acute phase response in DG (p = 8.5 × 10-6, z = 2.65) and CA1-3 (p = 4.7 × 10-6, z = 2.00). Weighted gene correlation network analysis (WGCNA) of clinical history indicated that SUDC-positive post-mortem virology (n = 4/17) had the most significant module in each brain region, with the top most significant associated with decreased mRNA metabolic processes (p = 2.8 × 10-5) in frontal cortex. Additional modules were associated with clinical history, including fever within 24 h of death (top: increased mitochondrial fission in DG, p = 1.8 × 10-3) and febrile seizure history (top: decreased small molecule metabolic processes in frontal cortex, p = 8.8 × 10-5) in all brain regions, neuropathological hippocampal findings in the DG (top: decreased focal adhesion, p = 1.9 × 10-3). Overall, cortical and hippocampal protein changes were present in SUDC cases and some correlated with clinical features. Our studies support that proteomic studies of SUDC cohorts can advance our understanding of the pathogenesis of these tragedies and may inform the development of preventive strategies.
PMCID:8953962
PMID: 35333953
ISSN: 1432-0533
CID: 5200692

The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome

Drummond, Eleanor; Kavanagh, Tomas; Pires, Geoffrey; Marta-Ariza, Mitchell; Kanshin, Evgeny; Nayak, Shruti; Faustin, Arline; Berdah, Valentin; Ueberheide, Beatrix; Wisniewski, Thomas
Amyloid plaques contain many proteins in addition to beta amyloid (Aβ). Previous studies examining plaque-associated proteins have shown these additional proteins are important; they provide insight into the factors that drive amyloid plaque development and are potential biomarkers or therapeutic targets for Alzheimer's disease (AD). The aim of this study was to comprehensively identify proteins that are enriched in amyloid plaques using unbiased proteomics in two subtypes of early onset AD: sporadic early onset AD (EOAD) and Down Syndrome (DS) with AD. We focused our study on early onset AD as the drivers of the more aggressive pathology development in these cases is unknown and it is unclear whether amyloid-plaque enriched proteins differ between subtypes of early onset AD. Amyloid plaques and neighbouring non-plaque tissue were microdissected from human brain sections using laser capture microdissection and label-free LC-MS was used to quantify the proteins present. 48 proteins were consistently enriched in amyloid plaques in EOAD and DS. Many of these proteins were more significantly enriched in amyloid plaques than Aβ. The most enriched proteins in amyloid plaques in both EOAD and DS were: COL25A1, SMOC1, MDK, NTN1, OLFML3 and HTRA1. Endosomal/lysosomal proteins were particularly highly enriched in amyloid plaques. Fluorescent immunohistochemistry was used to validate the enrichment of four proteins in amyloid plaques (moesin, ezrin, ARL8B and SMOC1) and to compare the amount of total Aβ, Aβ40, Aβ42, phosphorylated Aβ, pyroglutamate Aβ species and oligomeric species in EOAD and DS. These studies showed that phosphorylated Aβ, pyroglutamate Aβ species and SMOC1 were significantly higher in DS plaques, while oligomers were significantly higher in EOAD. Overall, we observed that amyloid plaques in EOAD and DS largely contained the same proteins, however the amount of enrichment of some proteins was different in EOAD and DS. Our study highlights the significant enrichment of many proteins in amyloid plaques, many of which may be potential therapeutic targets and/or biomarkers for AD.
PMCID:9008934
PMID: 35418158
ISSN: 2051-5960
CID: 5201962

Proteomic Characterization of Senescent Laryngeal Adductor and Plantaris Hindlimb Muscles

Shembel, Adrianna C; Kanshin, Evgeny; Ueberheide, Beatrix; Johnson, Aaron M
OBJECTIVES/OBJECTIVE:The goals of this study were to 1) compare global protein expression in muscles of the larynx and hindlimb and 2) investigate differences in protein expression between aged and nonaged muscle using label-free global proteomic profiling methods. METHODS:Liquid chromatography-mass spectrometry (LC-MS/MS) analysis was performed on thyroarytenoid intrinsic laryngeal muscle and plantaris hindlimb muscle from 10 F344xBN F1 male rats (5 old and 5 young). Protein expression was compared and pathway enrichment analysis performed for each muscle type (larynx and limb) and age group (old and young muscle). RESULTS:Over 1,000 proteins were identified in common across both muscle types and age groups using LC-MS/MS analysis. Significant age-related differences were seen across 107 proteins in plantaris hindlimb and in 19 proteins in thyroarytenoid laryngeal muscle. Bioinformatic and enrichment analysis demonstrated protein differences between the hindlimb and larynx may relate to immune and stress redox responses and RNA repair. CONCLUSION/CONCLUSIONS:There are clear differences in protein expressions between the laryngeal and hindlimb skeletal muscles. Initial analysis suggests differences between the two muscle groups may relate to stress responses and repair mechanisms. Age-related changes in the thyroarytenoid appear to be less obvious than in the plantaris. Further in-depth study is needed to elucidate how aging affects protein expression in the laryngeal muscles. LEVEL OF EVIDENCE/METHODS:NA Laryngoscope, 2021.
PMID: 34115877
ISSN: 1531-4995
CID: 4900862