Try a new search

Format these results:

Searched for:

person:mangim04

in-biosketch:yes

Total Results:

36


Heart transplantation: advances in expanding the donor pool and xenotransplantation

Jou, Stephanie; Mendez, Sean R; Feinman, Jason; Mitrani, Lindsey R; Fuster, Valentin; Mangiola, Massimo; Moazami, Nader; Gidea, Claudia
Approximately 65 million adults globally have heart failure, and the prevalence is expected to increase substantially with ageing populations. Despite advances in pharmacological and device therapy of heart failure, long-term morbidity and mortality remain high. Many patients progress to advanced heart failure and develop persistently severe symptoms. Heart transplantation remains the gold-standard therapy to improve the quality of life, functional status and survival of these patients. However, there is a large imbalance between the supply of organs and the demand for heart transplants. Therefore, expanding the donor pool is essential to reduce mortality while on the waiting list and improve clinical outcomes in this patient population. A shift has occurred to consider the use of organs from donors with hepatitis C virus, HIV or SARS-CoV-2 infection. Other advances in this field have also expanded the donor pool, including opt-out donation policies, organ donation after circulatory death and xenotransplantation. We provide a comprehensive overview of these various novel strategies, provide objective data on their safety and efficacy, and discuss some of the unresolved issues and controversies of each approach.
PMID: 37452122
ISSN: 1759-5010
CID: 5537952

Specificity of HLA monoclonal antibodies and their use to determine HLA expression on lymphocytes and peripheral blood stem cells

Peton, Benjamin; Taniguchi, Michiko; Mangiola, Massimo; Al Malki, Monzr M; Gendzekhadze, Ketevan
HLA Class I and II expression are known to differ locus-to-locus, however, HLA expression on the cell-surface is frequently reported as the total amount of HLA Class I or II antigens. This is despite evidence that indicates the differential expression of HLA can influence patient outcomes post-transplantation. Although numerous commercially available HLA monoclonal antibodies (mAbs) exist to characterize HLA expression, there is currently a lack of detailed information regarding their reactivities to HLA specificities. The specificities of locus-specific HLA mAbs (nine Class I and four Class II mAbs) were evaluated by two solid-phase Luminex single antigen bead assays. The reactivity patterns of these mAbs were then confirmed by flow cytometry using lymphocytes and PBSCs (peripheral blood stem cells). Out of the 13 HLA mAbs tested, only four (one Class I and three Class II mAbs) displayed intra-locus reactivity without also reacting to inter-locus specificities. Epitope analysis revealed the presence of shared epitopes across numerous HLA loci, explaining much of the observed inter-locus reactivity. The specificity of the HLA mAbs seen in solid-phase assays was confirmed against PBSCs and lymphocytes by flow cytometry. Using this method, we observed differences in the cell surface expression of HLA-C, HLA-DR, HLA-DQ, and HLA-DP between PBSCs and lymphocytes. Our results emphasize the need to characterize the reactivity patterns of HLA mAbs using solid-phase assays before their use on cells. Through understanding the reactivity of these HLA mAbs, the cellular expression of HLA can be more accurately assessed in downstream assays.
PMID: 37596840
ISSN: 2059-2310
CID: 5619222

Biologically derived epicardial patch induces macrophage mediated pathophysiologic repair in chronically infarcted swine hearts

Lancaster, J J; Grijalva, A; Fink, J; Ref, J; Daugherty, S; Whitman, S; Fox, K; Gorman, G; Lancaster, L D; Avery, R; Acharya, T; McArthur, A; Strom, J; Pierce, M K; Moukabary, T; Borgstrom, M; Benson, D; Mangiola, M; Pandey, A C; Zile, M R; Bradshaw, A; Koevary, J W; Goldman, S
There are nearly 65 million people with chronic heart failure (CHF) globally, with no treatment directed at the pathologic cause of the disease, the loss of functioning cardiomyocytes. We have an allogeneic cardiac patch comprised of cardiomyocytes and human fibroblasts on a bioresorbable matrix. This patch increases blood flow to the damaged heart and improves left ventricular (LV) function in an immune competent rat model of ischemic CHF. After 6 months of treatment in an immune competent Yucatan mini swine ischemic CHF model, this patch restores LV contractility without constrictive physiology, partially reversing maladaptive LV and right ventricular remodeling, increases exercise tolerance, without inducing any cardiac arrhythmias or a change in myocardial oxygen consumption. Digital spatial profiling in mice with patch placement 3 weeks after a myocardial infarction shows that the patch induces a CD45pos immune cell response that results in an infiltration of dendritic cells and macrophages with high expression of macrophages polarization to the anti-inflammatory reparative M2 phenotype. Leveraging the host native immune system allows for the potential use of immunomodulatory therapies for treatment of chronic inflammatory diseases not limited to ischemic CHF.
PMCID:10676365
PMID: 38007534
ISSN: 2399-3642
CID: 5617542

Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study

Loupy, Alexandre; Goutaudier, Valentin; Giarraputo, Alessia; Mezine, Fariza; Morgand, Erwan; Robin, Blaise; Khalil, Karen; Mehta, Sapna; Keating, Brendan; Dandro, Amy; Certain, Anaïs; Tharaux, Pierre-Louis; Narula, Navneet; Tissier, Renaud; Giraud, Sébastien; Hauet, Thierry; Pass, Harvey I; Sannier, Aurélie; Wu, Ming; Griesemer, Adam; Ayares, David; Tatapudi, Vasishta; Stern, Jeffrey; Lefaucheur, Carmen; Bruneval, Patrick; Mangiola, Massimo; Montgomery, Robert A
BACKGROUND:Cross-species immunological incompatibilities have hampered pig-to-human xenotransplantation, but porcine genome engineering recently enabled the first successful experiments. However, little is known about the immune response after the transplantation of pig kidneys to human recipients. We aimed to precisely characterise the early immune responses to the xenotransplantation using a multimodal deep phenotyping approach. METHODS:We did a complete phenotyping of two pig kidney xenografts transplanted to decedent humans. We used a multimodal strategy combining morphological evaluation, immunophenotyping (IgM, IgG, C4d, CD68, CD15, NKp46, CD3, CD20, and von Willebrand factor), gene expression profiling, and whole-transcriptome digital spatial profiling and cell deconvolution. Xenografts before implantation, wild-type pig kidney autografts, as well as wild-type, non-transplanted pig kidneys with and without ischaemia-reperfusion were used as controls. FINDINGS:cells. Both xenografts showed increased expression of genes biologically related to a humoral response, including monocyte and macrophage activation, natural killer cell burden, endothelial activation, complement activation, and T-cell development. Whole-transcriptome digital spatial profiling showed that antibody-mediated injury was mainly located in the glomeruli of the xenografts, with significant enrichment of transcripts associated with monocytes, macrophages, neutrophils, and natural killer cells. This phenotype was not observed in control pig kidney autografts or in ischaemia-reperfusion models. INTERPRETATION:Despite favourable short-term outcomes and absence of hyperacute injuries, our findings suggest that antibody-mediated rejection in pig-to-human kidney xenografts might be occurring. Our results suggest specific therapeutic targets towards the humoral arm of rejection to improve xenotransplantation results. FUNDING:OrganX and MSD Avenir.
PMID: 37598688
ISSN: 1474-547x
CID: 5598182

Pig-to-human heart xenotransplantation in two recently deceased human recipients

Moazami, Nader; Stern, Jeffrey M; Khalil, Karen; Kim, Jacqueline I; Narula, Navneet; Mangiola, Massimo; Weldon, Elaina P; Kagermazova, Larisa; James, Les; Lawson, Nikki; Piper, Greta L; Sommer, Philip M; Reyentovich, Alex; Bamira, Daniel; Saraon, Tajinderpal; Kadosh, Bernard S; DiVita, Michael; Goldberg, Randal I; Hussain, Syed T; Chan, Justin; Ngai, Jennie; Jan, Thomas; Ali, Nicole M; Tatapudi, Vasishta S; Segev, Dorry L; Bisen, Shivani; Jaffe, Ian S; Piegari, Benjamin; Kowalski, Haley; Kokkinaki, Maria; Monahan, Jeffrey; Sorrells, Lori; Burdorf, Lars; Boeke, Jef D; Pass, Harvey; Goparaju, Chandra; Keating, Brendan; Ayares, David; Lorber, Marc; Griesemer, Adam; Mehta, Sapna A; Smith, Deane E; Montgomery, Robert A
Genetically modified xenografts are one of the most promising solutions to the discrepancy between the numbers of available human organs for transplantation and potential recipients. To date, a porcine heart has been implanted into only one human recipient. Here, using 10-gene-edited pigs, we transplanted porcine hearts into two brain-dead human recipients and monitored xenograft function, hemodynamics and systemic responses over the course of 66 hours. Although both xenografts demonstrated excellent cardiac function immediately after transplantation and continued to function for the duration of the study, cardiac function declined postoperatively in one case, attributed to a size mismatch between the donor pig and the recipient. For both hearts, we confirmed transgene expression and found no evidence of cellular or antibody-mediated rejection, as assessed using histology, flow cytometry and a cytotoxic crossmatch assay. Moreover, we found no evidence of zoonotic transmission from the donor pigs to the human recipients. While substantial additional work will be needed to advance this technology to human trials, these results indicate that pig-to-human heart xenotransplantation can be performed successfully without hyperacute rejection or zoonosis.
PMID: 37488288
ISSN: 1546-170x
CID: 5595152

Immunologic risk stratification of pediatric heart transplant patients by combining HLA-EMMA and PIRCHE-II

Ellison, M; Mangiola, M; Marrari, M; Bentlejewski, C; Sadowski, J; Zern, D; Kramer, Cynthia Silvia Maria; Heidt, S; Niemann, M; Xu, Q; Dipchand, A I; Mahle, W T; Rossano, J W; Canter, C E; Singh, T P; Zuckerman, W A; Hsu, D T; Feingold, B; Webber, S A; Zeevi, A
Human leukocyte antigen (HLA) molecular mismatch is a powerful biomarker of rejection. Few studies have explored its use in assessing rejection risk in heart transplant recipients. We tested the hypothesis that a combination of HLA Epitope Mismatch Algorithm (HLA-EMMA) and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II) algorithms can improve risk stratification of pediatric heart transplant recipients. Class I and II HLA genotyping were performed by next-generation sequencing on 274 recipient/donor pairs enrolled in the Clinical Trials in Organ Transplantation in Children (CTOTC). Using high-resolution genotypes, we performed HLA molecular mismatch analysis with HLA-EMMA and PIRCHE-II, and correlated these findings with clinical outcomes. Patients without pre-formed donor specific antibody (DSA) (n=100) were used for correlations with post-transplant DSA and antibody mediated rejection (ABMR). Risk cut-offs were determined for DSA and ABMR using both algorithms. HLA-EMMA cut-offs alone predict the risk of DSA and ABMR; however, if used in combination with PIRCHE-II, the population could be further stratified into low-, intermediate-, and high-risk groups. The combination of HLA-EMMA and PIRCHE-II enables more granular immunological risk stratification. Intermediate-risk cases, like low-risk cases, are at a lower risk of DSA and ABMR. This new way of risk evaluation may facilitate individualized immunosuppression and surveillance.
PMCID:10043167
PMID: 36999035
ISSN: 1664-3224
CID: 5463442

Immunologic risk stratification of pediatric heart transplant patients by combining HLAMatchmaker and PIRCHE-II

Mangiola, Massimo; Ellison, Mitchell A; Marrari, Marilyn; Bentlejewski, Carol; Sadowski, John; Zern, Dwayne; Niemann, Matthias; Feingold, Brian; Webber, Steve A; Zeevi, Adriana
BACKGROUND:Molecular-level human leukocyte antigen (HLA) mismatch is a powerful biomarker of rejection; however, few studies have explored its use in heart transplant recipients, and none have attempted to use the results of separate algorithms synergistically. Here we tested the hypothesis that a combination of HLAMatchmaker and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II) can be used to identify more patients at low risk of rejection. METHODS:We studied 274 recipient/donor pairs enrolled in the Clinical Trials in Organ Transplantation in Children (CTOTC) performing class I and II HLA genotyping by next-generation sequencing to determine eplet mismatch (epMM) load and PIRCHE-II score. Correlation with clinical outcomes was performed on 131 cases. RESULTS:Of the 131 patients, 100 without pre-formed donor specific antibody (DSA) were used to identify cutoffs for the Class I, HLA-DR, and HLA-DQ epMM load and PIRCHE-II score for risk of developing post-transplant DSA (epMM: Class I/DR/DQ = 9/9/6; PIRCHE-II: 141/116/111) and antibody-mediated rejection (ABMR) (epMM: 9/8/8; PIRCHE-II: 157/80/201). Patients with above cut-off epMM load appear to be less likely to develop DSA and ABMR if their PIRCHE-II score is below cut-off (high epMM/high PIRCHE-II: 12.3%-20.3% DSA and 9%-13.5% ABMR vs high epMM/low PIRCHE-II: 4%-10% DSA and 0%-2% ABMR). CONCLUSION/CONCLUSIONS:For the first time in a pediatric heart transplant cohort, immunologic risk cut-offs for DSA and ABMR have been established. When used together, epMM load and PIRCHE-II score allow us to reclassify a portion of cases with high epMM load as having a lower risk for developing DSA and ABMR.
PMID: 35437211
ISSN: 1557-3117
CID: 5218202

One-year immunologic outcomes of lung transplantation utilizing hepatitis C-viremic donors

Lewis, Tyler C; Lesko, Melissa; Rudym, Darya; Lonze, Bonnie E; Mangiola, Massimo; Natalini, Jake G; Chan, Justin C Y; Chang, Stephanie H; Angel, Luis F
Little is known about the effects of hepatitis C viremia on immunologic outcomes in the era of direct-acting antivirals. We conducted a prospective, single-arm trial of lung transplantation from hepatitis C-infected donors into hepatitis C-naïve recipients (n = 21). Recipients were initiated on glecaprevir-pibrentasvir immediately post-transplant and were continued on therapy for a total of 8 weeks. A control group of recipients of hepatitis C-negative lungs were matched 1:1 on baseline variables (n = 21). The primary outcome was the frequency of acute cellular rejection over 1-year post-transplant. Treatment with glecaprevir-pibrentasvir was well tolerated and resulted in viremia clearance after a median of 16 days of therapy (IQR 10-24 days). At one year, there was no difference in incidence of acute cellular rejection (71.4% vs. 85.7%, P = .17) or rejection requiring treatment (33.3% vs. 57.1%, P = .12). Mean cumulative acute rejection scores were similar between groups (.46 [SD ± .53] vs. .52 [SD ± .37], P = .67). Receipt of HCV+ organs was not associated with acute rejection on unadjusted Cox regression analysis (HR .55, 95% CI .28-1.11, P = .09), or when adjusted for risk factors known to be associated with acute rejection (HR .57, 95% CI .27-1.21, P = .14). Utilization of hepatitis C infected lungs with immediate treatment leads to equivalent immunologic outcomes at 1 year.
PMID: 35689815
ISSN: 1399-0012
CID: 5248602

Results of Two Cases of Pig-to-Human Kidney Xenotransplantation [Case Report]

Montgomery, Robert A; Stern, Jeffrey M; Lonze, Bonnie E; Tatapudi, Vasishta S; Mangiola, Massimo; Wu, Ming; Weldon, Elaina; Lawson, Nikki; Deterville, Cecilia; Dieter, Rebecca A; Sullivan, Brigitte; Boulton, Gabriella; Parent, Brendan; Piper, Greta; Sommer, Philip; Cawthon, Samantha; Duggan, Erin; Ayares, David; Dandro, Amy; Fazio-Kroll, Ana; Kokkinaki, Maria; Burdorf, Lars; Lorber, Marc; Boeke, Jef D; Pass, Harvey; Keating, Brendan; Griesemer, Adam; Ali, Nicole M; Mehta, Sapna A; Stewart, Zoe A
BACKGROUND:Xenografts from genetically modified pigs have become one of the most promising solutions to the dearth of human organs available for transplantation. The challenge in this model has been hyperacute rejection. To avoid this, pigs have been bred with a knockout of the alpha-1,3-galactosyltransferase gene and with subcapsular autologous thymic tissue. METHODS:We transplanted kidneys from these genetically modified pigs into two brain-dead human recipients whose circulatory and respiratory activity was maintained on ventilators for the duration of the study. We performed serial biopsies and monitored the urine output and kinetic estimated glomerular filtration rate (eGFR) to assess renal function and xenograft rejection. RESULTS:in Recipient 2. In both recipients, the creatinine level, which had been at a steady state, decreased after implantation of the xenograft, from 1.97 to 0.82 mg per deciliter in Recipient 1 and from 1.10 to 0.57 mg per deciliter in Recipient 2. The transplanted kidneys remained pink and well-perfused, continuing to make urine throughout the study. Biopsies that were performed at 6, 24, 48, and 54 hours revealed no signs of hyperacute or antibody-mediated rejection. Hourly urine output with the xenograft was more than double the output with the native kidneys. CONCLUSIONS:Genetically modified kidney xenografts from pigs remained viable and functioning in brain-dead human recipients for 54 hours, without signs of hyperacute rejection. (Funded by Lung Biotechnology.).
PMID: 35584156
ISSN: 1533-4406
CID: 5230812

First Report of Xenotransplantation from a Pig to Human Recipient [Meeting Abstract]

Stern, J; Tatapudi, V; Lonze, B; Stewart, Z; Mangiola, M; Wu, M; Mehta, S; Weldon, E; Dieter, R; Lawson, N; Griesemer, A; Parent, B; Piper, G; Sommer, P; Cawthon, S; Sullivan, B; Ali, N; Montgomery, R
ORIGINAL:0015582
ISSN: 1600-6143
CID: 5231032