Try a new search

Format these results:

Searched for:

person:milleg05

Total Results:

157


Getting off tract: contributions of intraorgan microbiota to cancer in extraintestinal organs

Thomas, Scott C; Miller, George; Li, Xin; Saxena, Deepak
The gastrointestinal ecosystem has received the most attention when examining the contributions of the human microbiome to health and disease. This concentration of effort is logical due to the overwhelming abundance of microbes in the gut coupled with the relative ease of sampling compared with other organs. However, the intestines are intimately connected to multiple extraintestinal organs, providing an opportunity for homeostatic microbial colonisation and pathogenesis in organs traditionally thought to be sterile or only transiently harbouring microbiota. These habitats are challenging to sample, and their low microbial biomass among large amounts of host tissue can make study challenging. Nevertheless, recent findings have shown that many extraintestinal organs that are intimately linked to the gut harbour stable microbiomes, which are colonised from the gut in selective manners and have highlighted not just the influence of the bacteriome but that of the mycobiome and virome on oncogenesis and health.
PMID: 37918889
ISSN: 1468-3288
CID: 5611712

Reply to: Revisiting the intrinsic mycobiome in pancreatic cancer [Letter]

Xu, Fangxi; Saxena, Deepak; Pushalkar, Smruti; Miller, George
PMID: 37532815
ISSN: 1476-4687
CID: 5594552

Correction to: BTLA+CD200+ B cells dictate the divergent immune landscape and immunotherapeutic resistance in metastatic vs. primary pancreatic cancer

Diskin, Brian; Adam, Salma; Soto, Gustavo Sanchez; Liria, Miguel; Aykut, Berk; Sundberg, Belen; Li, Eric; Leinwand, Joshua; Chen, Ruonan; Kim, Mirhee; Salas, Ruben D; Cassini, Marcelo F; Buttar, Chandan; Wang, Wei; Farooq, Mohammad Saad; Shadaloey, Sorin A A; Werba, Gregor; Fnu, Amreek; Yang, Fan; Hirsch, Carolina; Glinski, John; Panjwani, Angilee; Weitzner, Yael; Cohen, Deirdre; Asghar, Usman; Miller, George
PMID: 36707621
ISSN: 1476-5594
CID: 5419832

BTLA+CD200+ B cells dictate the divergent immune landscape and immunotherapeutic resistance in metastatic vs. primary pancreatic cancer

Diskin, Brian; Adam, Salma; Soto, Gustavo Sanchez; Liria, Miguel; Aykut, Berk; Sundberg, Belen; Li, Eric; Leinwand, Joshua; Chen, Ruonan; Kim, Mirhee; Salas, Ruben D; Cassini, Marcelo F; Buttar, Chandan; Wang, Wei; Farooq, Mohammad Saad; Shadaloey, Sorin A A; Werba, Gregor; Fnu, Amreek; Yang, Fan; Hirsch, Carolina; Glinski, John; Panjwani, Angilee; Weitzner, Yael; Cohen, Deirdre; Miller, George
Response to cancer immunotherapy in primary versus metastatic disease has not been well-studied. We found primary pancreatic ductal adenocarcinoma (PDA) is responsive to diverse immunotherapies whereas liver metastases are resistant. We discovered divergent immune landscapes in each compartment. Compared to primary tumor, liver metastases in both mice and humans are infiltrated by highly anergic T cells and MHCIIloIL10+ macrophages that are unable to present tumor-antigen. Moreover, a distinctive population of CD24+CD44-CD40- B cells dominate liver metastases. These B cells are recruited to the metastatic milieu by Muc1hiIL18hi tumor cells, which are enriched >10-fold in liver metastases. Recruited B cells drive macrophage-mediated adaptive immune-tolerance via CD200 and BTLA. Depleting B cells or targeting CD200/BTLA enhanced macrophage and T-cell immunogenicity and enabled immunotherapeutic efficacy of liver metastases. Our data detail the mechanistic underpinnings for compartment-specific immunotherapy-responsiveness and suggest that primary PDA models are poor surrogates for evaluating immunity in advanced disease.
PMID: 35948648
ISSN: 1476-5594
CID: 5286982

Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer

Kurz, Emma; Hirsch, Carolina Alcantara; Dalton, Tanner; Shadaloey, Sorin Alberto; Khodadadi-Jamayran, Alireza; Miller, George; Pareek, Sumedha; Rajaei, Hajar; Mohindroo, Chirayu; Baydogan, Seyda; Ngo-Huang, An; Parker, Nathan; Katz, Matthew H G; Petzel, Maria; Vucic, Emily; McAllister, Florencia; Schadler, Keri; Winograd, Rafael; Bar-Sagi, Dafna
Aerobic exercise is associated with decreased cancer incidence and cancer-associated mortality. However, little is known about the effects of exercise on pancreatic ductal adenocarcinoma (PDA), a disease for which current therapeutic options are limited. Herein, we show that aerobic exercise reduces PDA tumor growth, by modulating systemic and intra-tumoral immunity. Mechanistically, exercise promotes immune mobilization and accumulation of tumor-infiltrating IL15Rα+ CD8 T cells, which are responsible for the tumor-protective effects. In clinical samples, an exercise-dependent increase of intra-tumoral CD8 T cells is also observed. Underscoring the translational potential of the interleukin (IL)-15/IL-15Rα axis, IL-15 super-agonist (NIZ985) treatment attenuates tumor growth, prolongs survival, and enhances sensitivity to chemotherapy. Finally, exercise or NIZ985 both sensitize pancreatic tumors to αPD-1, with improved anti-tumor and survival benefits. Collectively, our findings highlight the therapeutic potential of an exercise-oncology axis and identify IL-15 activation as a promising treatment strategy for this deadly disease.
PMID: 35660135
ISSN: 1878-3686
CID: 5231112

Intrahepatic microbes govern liver immunity by programming NKT cells

Leinwand, Joshua C; Paul, Bidisha; Chen, Ruonan; Xu, Fangxi; Sierra, Maria A; Paluru, Madan M; Nanduri, Sumant; Alcantara Hirsch, Carolina G; Shadaloey, Sorin Aa; Yang, Fan; Adam, Salma A; Li, Qianhao; Bandel, Michelle; Gakhal, Inderdeep; Appiah, Lara; Guo, Yuqi; Vardhan, Mridula; Flaminio, Zia J; Grodman, Emilie R; Mermelstein, Ari; Wang, Wei; Diskin, Brian; Aykut, Berk; Khan, Mohammed; Werba, Gregor; Pushalkar, Smruti; McKinstry, Mia; Kluger, Zachary; Park, Jaimie J; Hsieh, Brandon; Dancel-Manning, Kristen; Liang, Feng-Xia; Park, James S; Saxena, Anjana; Li, Xin; Theise, Neil D; Saxena, Deepak; Miller, George
The gut microbiome shapes local and systemic immunity. The liver is presumed to be a protected sterile site. As such, a hepatic microbiome has not been examined. Here, we showed a liver microbiome in mice and humans that is distinct from the gut and is enriched in Proteobacteria. It undergoes dynamic alterations with age and is influenced by the environment and host physiology. Fecal microbial transfer experiments revealed that the liver microbiome is populated from the gut in a highly selective manner. Hepatic immunity is dependent on the microbiome, specifically Bacteroidetes species. Targeting Bacteroidetes with oral antibiotics reduced hepatic immune cells by ~90%, prevented APC maturation, and mitigated adaptive immunity. Mechanistically, our findings are consistent with presentation of Bacteroidetes-derived glycosphingolipids to NKT cells promoting CCL5 signaling, which drives hepatic leukocyte expansion and activation, among other possible host-microbe interactions. Collectively, we reveal a microbial - glycosphingolipid - NKT - CCL5 axis that underlies hepatic immunity.
PMID: 35175938
ISSN: 1558-8238
CID: 5163572

Author Correction: Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance

Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam S D Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, George
PMID: 34845391
ISSN: 1546-170x
CID: 5065482

Fungi, host immune response, and tumorigenesis

Elaskandrany, Miar; Patel, Rohin; Patel, Mintoo; Miller, George; Saxena, Deepak; Saxena, Anjana
Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host's immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant ("cold") tumor microenvironment to an immunocompetent ("hot") milieu that is effective in eliminating tumorigenesis.
PMID: 34231392
ISSN: 1522-1547
CID: 4984412

SSAT State-of-the-Art Conference: Advancements in the Microbiome

Miller, Miquell O; Kashyap, Purna C; Becker, Sarah L; Thomas, Ryan M; Hodin, Richard A; Miller, George; Hundeyin, Mautin; Pushalkar, Smruti; Cohen, Deirdre; Saxena, Deepak; Shogan, Benjamin D; Morris-Stiff, Gareth J
The microbiome plays a major role in human physiology by influencing obesity, inducing inflammation, and impacting cancer therapies. During the 60th Annual Meeting of the Society of the Alimentary Tract (SSAT) at the State-of-the-Art Conference, experts in the field discussed the influence of the microbiome. This paper is a summary of the influence of the microbiome on obesity, inflammatory bowel disease, pancreatic cancer, cancer therapies, and gastrointestinal optimization. This review shows how the microbiome plays an important role in the development of diseases and surgical complications. Future studies are needed in targeting the gut microbiome to develop individualized therapies.
PMID: 32989690
ISSN: 1873-4626
CID: 4651692

Author Correction: The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression

Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George
PMID: 33707632
ISSN: 1476-4687
CID: 4809512