Try a new search

Format these results:

Searched for:

person:mmo267

in-biosketch:yes

Total Results:

31


Infant pain vs. pain with parental suppression: Immediate and enduring impact on brain, pain and affect

Barr, Gordon A; Opendak, Maya; Perry, Rosemarie E; Sarro, Emma; Sullivan, Regina M
BACKGROUND:In the short term, parental presence while a human infant is in pain buffers the immediate pain responses, although emerging evidence suggests repeated social buffering of pain may have untoward long-term effects. METHODS/FINDING/UNASSIGNED:To explore the short- and long-term impacts of social buffering of pain, we first measured the infant rat pup's [postnatal day (PN) 8, or 12] response to mild tail shock with the mother present compared to shock alone or no shock. Shock with the mother reduced pain-related behavioral activation and USVs of pups at both ages and reduced Fos expression in the periaqueductal gray, hypothalamic paraventricular nucleus, and the amygdala at PN12 only. At PN12, shock with the mother compared to shock alone differentially regulated expression of several hundred genes related to G-protein-coupled receptors (GPCRs) and neural development, whereas PN8 pups showed a less robust and less coherent expression pattern. In a second set of experiments, pups were exposed to daily repeated Shock-mother pairings (or controls) at PN5-9 or PN10-14 (during and after pain sensitive period, respectively) and long-term outcome assessed in adults. Shock+mother pairing at PN5-9 reduced adult carrageenan-induced thermal hyperalgesia and reduced Fos expression, but PN10-14 pairings had minimal impact. The effect of infant treatment on adult affective behavior showed a complex treatment by age dependent effect. Adult social behavior was decreased following Shock+mother pairings at both PN5-9 and PN10-14, whereas shock alone had no effect. Adult fear responses to a predator odor were decreased only by PN10-14 treatment and the infant Shock alone and Shock+mother did not differ. CONCLUSIONS/SIGNIFICANCE/CONCLUSIONS:Overall, integrating these results into our understanding of long-term programming by repeated infant pain experiences, the data suggest that pain experienced within a social context impacts infant neurobehavioral responses and initiates an altered developmental trajectory of pain and affect processing that diverges from experiencing pain alone.
PMCID:10653509
PMID: 37972112
ISSN: 1932-6203
CID: 5608052

Basolateral amygdala hyperexcitability is associated with precocious developmental emergence of fear-learning in Fragile X Syndrome

Svalina, Matthew N; Rio, Christian Cea-Del; Kushner, J Keenan; Levy, Abigail; Baca, Serapio M; Guthman, E Mae; Opendak, Maya; Sullivan, Regina; Restrepo, Diego; Huntsman, Molly M
Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the most common monogenic cause of intellectual disability, autism spectrum disorders (ASDs) and anxiety disorders. Loss of fragile x mental retardation protein (FMRP) results in disruptions of synaptic development during a critical period (CP) of circuit formation in the basolateral amygdala (BLA). However, it is unknown how these alterations impact microcircuit development and function. Using a combination of electrophysiologic and behavioral approaches in both male (Fmr1-/y) and female (Fmr1-/-) mice, we demonstrate that principal neurons (PNs) in the Fmr1KO BLA exhibit hyperexcitability during a sensitive period in amygdala development. This hyperexcitability contributes to increased excitatory gain in fear-learning circuits. Further, synaptic plasticity is enhanced in the BLA of Fmr1KO mice. Behavioral correlation demonstrates that fear-learning emerges precociously in the Fmr1KO mouse. Early life THIP intervention ameliorates fear-learning in Fmr1KO mice. These results suggest that CP plasticity in the amygdala of the Fmr1KO mouse may be shifted to earlier developmental timepoints.SIGNIFICANCE STATEMENTIn these studies we identify early developmental alterations in principal neurons in the FXS BLA. We show that as early as P14, excitability and feed-forward excitation, and synaptic plasticity is enhanced in Fmr1KO lateral amygdala. This correlates with precocious emergence of fear-learning in the Fmr1KO mouse. Early life THIP intervention restores CP plasticity in WT mice and ameliorates fear-learning in the Fmr1KO mouse.
PMID: 35970562
ISSN: 1529-2401
CID: 5299822

Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala

Opendak, Maya; Raineki, Charlis; Perry, Rosemarie E; Rincón-Cortés, Millie; Song, Soomin C; Zanca, Roseanna M; Wood, Emma; Packard, Katherine; Hu, Shannon; Woo, Joyce; Martinez, Krissian; Vinod, K Yaragudri; Brown, Russell W; Deehan, Gerald A; Froemke, Robert C; Serrano, Peter A; Wilson, Donald A; Sullivan, Regina M
Social interaction deficits seen in psychiatric disorders emerge in early-life and are most closely linked to aberrant neural circuit function. Due to technical limitations, we have limited understanding of how typical versus pathological social behavior circuits develop. Using a suite of invasive procedures in awake, behaving infant rats, including optogenetics, microdialysis, and microinfusions, we dissected the circuits controlling the gradual increase in social behavior deficits following two complementary procedures-naturalistic harsh maternal care and repeated shock alone or with an anesthetized mother. Whether the mother was the source of the adversity (naturalistic Scarcity-Adversity) or merely present during the adversity (repeated shock with mom), both conditions elevated basolateral amygdala (BLA) dopamine, which was necessary and sufficient in initiating social behavior pathology. This did not occur when pups experienced adversity alone. These data highlight the unique impact of social adversity as causal in producing mesolimbic dopamine circuit dysfunction and aberrant social behavior.
PMID: 34706218
ISSN: 1097-4199
CID: 5033412

Oxytocin neurons enable social transmission of maternal behaviour

Carcea, Ioana; Caraballo, Naomi López; Marlin, Bianca J; Ooyama, Rumi; Riceberg, Justin S; Mendoza Navarro, Joyce M; Opendak, Maya; Diaz, Veronica E; Schuster, Luisa; Alvarado Torres, Maria I; Lethin, Harper; Ramos, Daniel; Minder, Jessica; Mendoza, Sebastian L; Bair-Marshall, Chloe J; Samadjopoulos, Grace H; Hidema, Shizu; Falkner, Annegret; Lin, Dayu; Mar, Adam; Wadghiri, Youssef Z; Nishimori, Katsuhiko; Kikusui, Takefumi; Mogi, Kazutaka; Sullivan, Regina M; Froemke, Robert C
Maternal care, including by non-biological parents, is important for offspring survival1-8. Oxytocin1,2,9-15, which is released by the hypothalamic paraventricular nucleus (PVN), is a critical maternal hormone. In mice, oxytocin enables neuroplasticity in the auditory cortex for maternal recognition of pup distress15. However, it is unclear how initial parental experience promotes hypothalamic signalling and cortical plasticity for reliable maternal care. Here we continuously monitored the behaviour of female virgin mice co-housed with an experienced mother and litter. This documentary approach was synchronized with neural recordings from the virgin PVN, including oxytocin neurons. These cells were activated as virgins were enlisted in maternal care by experienced mothers, who shepherded virgins into the nest and demonstrated pup retrieval. Virgins visually observed maternal retrieval, which activated PVN oxytocin neurons and promoted alloparenting. Thus rodents can acquire maternal behaviour by social transmission, providing a mechanism for adapting the brains of adult caregivers to infant needs via endogenous oxytocin.
PMID: 34381215
ISSN: 1476-4687
CID: 4972632

Neurobiology of Infant Fear and Anxiety: Impacts of Delayed Amygdala Development and Attachment Figure Quality

Sullivan, Regina M; Opendak, Maya
Anxiety disorders are the most common form of mental illness and are more likely to emerge during childhood compared with most other psychiatric disorders. While research on children is the gold standard for understanding the behavioral expression of anxiety and its neural circuitry, the ethical and technical limitations in exploring neural underpinnings limit our understanding of the child's developing brain. Instead, we must rely on animal models to build strong methodological bridges for bidirectional translation to child development research. Using the caregiver-infant context, we review the rodent literature on early-life fear development to characterize developmental transitions in amygdala function underlying age-specific behavioral transitions. We then describe how this system can be perturbed by early-life adversity, including reduced efficacy of the caregiver as a safe haven. We suggest that greater integration of clinically informed animal research enhances bidirectional translation to permit new approaches to therapeutics for children with early onset anxiety disorders.
PMID: 33109337
ISSN: 1873-2402
CID: 4661112

Infant Attachment and Social Modification of Stress Neurobiology

Packard, Katherine; Opendak, Maya; Soper, Caroline Davis; Sardar, Haniyyah; Sullivan, Regina M
Decades of research have informed our understanding of how stress impacts the brain to perturb behavior. However, stress during development has received specific attention as this occurs during a sensitive period for scaffolding lifelong socio-emotional behavior. In this review, we focus the developmental neurobiology of stress-related pathology during infancy and focus on one of the many important variables that can switch outcomes from adaptive to maladaptive outcome: caregiver presence during infants' exposure to chronic stress. While this review relies heavily on rodent neuroscience research, we frequently connect this work with the human behavioral and brain literature to facilitate translation. Bowlby's Attachment Theory is used as a guiding framework in order to understand how early care quality impacts caregiver regulation of the infant to produce lasting outcomes on mental health.
PMCID:8415781
PMID: 34483852
ISSN: 1662-5137
CID: 5011912

Defining Immediate Effects of Sensitive Periods on Infant Neurobehavioral Function

Sullivan, Regina M; Opendak, Maya
During a sensitive period associated with attachment, the infant brain has unique circuitry that enables the specialized adaptive behaviors required for survival in infancy. This infant brain is not an immature version of the adult brain. Within the attachment relationship, the infant remains close (proximity seeking) to the caregiver for nurturing and survival needs, but the caregiver also provides the immature infant with the physiological regulation interaction needed before self-regulation matures. Here we provide examples from the human and animal literature that illustrate some of these regulatory functions during sensitive periods, recent advances demonstrating the supporting transient neural mechanisms, and how these systems go awry in the absence of species-expected caregiving.
PMCID:7543993
PMID: 33043102
ISSN: 2352-1546
CID: 4629992

Elevated infant cortisol is necessary but not sufficient for transmission of environmental risk to infant social development: Cross-species evidence of mother-infant physiological social transmission

Perry, Rosemarie E; Braren, Stephen H; Opendak, Maya; Brandes-Aitken, Annie; Chopra, Divija; Woo, Joyce; Sullivan, Regina; Blair, Clancy
Environmental adversity increases child susceptibility to disrupted developmental outcomes, but the mechanisms by which adversity can shape development remain unclear. A translational cross-species approach was used to examine stress-mediated pathways by which poverty-related adversity can influence infant social development. Findings from a longitudinal sample of low-income mother-infant dyads indicated that infant cortisol (CORT) on its own did not mediate relations between early-life scarcity-adversity exposure and later infant behavior in a mother-child interaction task. However, maternal CORT through infant CORT served as a mediating pathway, even when controlling for parenting behavior. Findings using a rodent "scarcity-adversity" model indicated that pharmacologically blocking pup corticosterone (CORT, rodent equivalent to cortisol) in the presence of a stressed mother causally prevented social transmission of scarcity-adversity effects on pup social behavior. Furthermore, pharmacologically increasing pup CORT without the mother present was not sufficient to disrupt pup social behavior. Integration of our cross-species results suggests that elevated infant CORT may be necessary, but without elevated caregiver CORT, may not be sufficient in mediating the effects of environmental adversity on development. These findings underscore the importance of considering infant stress physiology in relation to the broader social context, including caregiver stress physiology, in research and interventional efforts.
PMID: 33427190
ISSN: 1469-2198
CID: 4771102

Adverse caregiving in infancy blunts neural processing of the mother

Opendak, Maya; Theisen, Emma; Blomkvist, Anna; Hollis, Kaitlin; Lind, Teresa; Sarro, Emma; Lundström, Johan N; Tottenham, Nim; Dozier, Mary; Wilson, Donald A; Sullivan, Regina M
The roots of psychopathology frequently take shape during infancy in the context of parent-infant interactions and adversity. Yet, neurobiological mechanisms linking these processes during infancy remain elusive. Here, using responses to attachment figures among infants who experienced adversity as a benchmark, we assessed rat pup cortical local field potentials (LFPs) and behaviors exposed to adversity in response to maternal rough and nurturing handling by examining its impact on pup separation-reunion with the mother. We show that during adversity, pup cortical LFP dynamic range decreased during nurturing maternal behaviors, but was minimally impacted by rough handling. During reunion, adversity-experiencing pups showed aberrant interactions with mother and blunted cortical LFP. Blocking pup stress hormone during either adversity or reunion restored typical behavior, LFP power, and cross-frequency coupling. This translational approach suggests adversity-rearing produces a stress-induced aberrant neurobehavioral processing of the mother, which can be used as an early biomarker of later-life pathology.
PMID: 32111822
ISSN: 2041-1723
CID: 4324502

Consolidation of Adverse Memories is Differentially Modulated by MTOR and ERK Across Development [Meeting Abstract]

Woo, Joyce; Opendak, Maya; Sullivan, Regina
ISI:000535308201166
ISSN: 0006-3223
CID: 4560902