Try a new search

Format these results:

Searched for:

person:nancej01

Total Results:

41


ZIF-1-mediated degradation of zinc finger proteins in the Caenorhabditis elegans germ line

Schwartz, Aaron Z A; Abdu, Yusuff; Nance, Jeremy
Rapid and conditional protein depletion is the gold standard genetic tool for deciphering the molecular basis of developmental processes. Previously, we showed that by conditionally expressing the E3 ligase substrate adaptor ZIF-1 in Caenorhabditis elegans somatic cells, proteins tagged with the first CCCH Zn finger 1 (ZF1) domain from the germline regulator PIE-1 degrade rapidly, resulting in loss-of-function phenotypes. The described role of ZIF-1 is to clear PIE-1 and several other CCCH Zn finger proteins from early somatic cells, helping to enrich them in germline precursor cells. Here, we show that proteins tagged with the PIE-1 ZF1 domain are subsequently cleared from primordial germ cells (PGCs) in embryos and from undifferentiated germ cells in larvae and adults by ZIF-1. We harness germline ZIF-1 activity to degrade a ZF1-tagged fusion protein from PGCs and show that its depletion produces phenotypes equivalent to those of a null mutation. Our findings reveal that ZIF-1 transitions from degrading CCCH Zn finger proteins in somatic cells to clearing them from undifferentiated germ cells, and that ZIF-1 activity can be harnessed as a new genetic tool to study the early germline.
PMID: 37647858
ISSN: 1943-2631
CID: 5609222

Niche cells regulate primordial germ cell quiescence in response to basement membrane signaling

McIntyre, Daniel C; Nance, Jeremy
Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.
PMCID:10445801
PMID: 37497562
ISSN: 1477-9129
CID: 5595232

Independent regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans primordial germ cells

Schwartz, Aaron Z A; Tsyba, Nikita; Abdu, Yusuff; Patel, Maulik R; Nance, Jeremy
Mitochondria harbor an independent genome, called mitochondrial DNA (mtDNA), which contains essential metabolic genes. Although mtDNA mutations occur at high frequency, they are inherited infrequently, indicating that germline mechanisms limit their accumulation. To determine how germline mtDNA is regulated, we examined the control of mtDNA quantity and quality in C. elegans primordial germ cells (PGCs). We show that PGCs combine strategies to generate a low point in mtDNA number by segregating mitochondria into lobe-like protrusions that are cannibalized by adjacent cells, and by concurrently eliminating mitochondria through autophagy, reducing overall mtDNA content twofold. As PGCs exit quiescence and divide, mtDNAs replicate to maintain a set point of ~200 mtDNAs per germline stem cell. Whereas cannibalism and autophagy eliminate mtDNAs stochastically, we show that the kinase PTEN-induced kinase 1 (PINK1), operating independently of Parkin and autophagy, preferentially reduces the fraction of mutant mtDNAs. Thus, PGCs employ parallel mechanisms to control both the quantity and quality of the founding population of germline mtDNAs.
PMCID:9536838
PMID: 36200990
ISSN: 2050-084x
CID: 5351652

A polarity pathway for exocyst-dependent intracellular tube extension

Abrams, Joshua; Nance, Jeremy
Lumen extension in intracellular tubes can occur when vesicles fuse with an invading apical membrane. Within the Caenorhabditis elegans excretory cell, which forms an intracellular tube, the exocyst vesicle-tethering complex is enriched at the lumenal membrane and is required for its outgrowth, suggesting that exocyst-targeted vesicles extend the lumen. Here, we identify a pathway that promotes intracellular tube extension by enriching the exocyst at the lumenal membrane. We show that PAR-6 and PKC-3/aPKC concentrate at the lumenal membrane and promote lumen extension. Using acute protein depletion, we find that PAR-6 is required for exocyst membrane recruitment, whereas PAR-3, which can recruit the exocyst in mammals, appears dispensable for exocyst localization and lumen extension. Finally, we show that CDC-42 and RhoGEF EXC-5/FGD regulate lumen extension by recruiting PAR-6 and PKC-3 to the lumenal membrane. Our findings reveal a pathway that connects CDC-42, PAR proteins, and the exocyst to extend intracellular tubes.
PMCID:8021397
PMID: 33687331
ISSN: 2050-084x
CID: 4837552

Stimulating Embryo Polarization with Mitochondrial Peroxide

Schwartz, Aaron Z A; Nance, Jeremy
Centrosomes break symmetry in the C. elegans one-cell embryo, triggering its anterior-posterior polarization and initiating segregation of somatic and germline cell lineages. In this issue of Developmental Cell, De Henau et al. show that mitochondria also contribute to symmetry breaking by producing hydrogen peroxide at the egg's future posterior pole.
PMID: 32369741
ISSN: 1878-1551
CID: 4422362

The Role of pkc-3 and Genetic Suppressors in Caenorhabditis elegans Epithelial Cell Junction Formation

Montoyo-Rosario, José G; Armenti, Stephen T; Zilberman, Yuliya; Nance, Jeremy
Epithelial cells form intercellular junctions to strengthen cell-cell adhesion and limit diffusion, allowing epithelia to function as dynamic tissues and barriers separating internal and external environments. Junctions form as epithelial cells differentiate; clusters of junction proteins first concentrate apically, then mature into continuous junctional belts that encircle and connect each cell. In mammals and Drosophila, atypical protein kinase C (aPKC) is required for junction maturation, although how it contributes to this process is poorly understood. A role for the Caenorhabditis elegans aPKC homologue PKC-3 in junction formation has not been described previously. Here, we show that PKC-3 is essential for junction maturation as epithelia first differentiate. Using a temperature-sensitive allele of pkc-3 that causes junction breaks in the spermatheca and leads to sterility, we identify intragenic and extragenic suppressors that render pkc-3 mutants fertile. Intragenic suppressors include an unanticipated stop-to-stop mutation in the pkc-3 gene, providing evidence for the importance of stop codon identity in gene activity. One extragenic pkc-3 suppressor is a loss-of-function allele of the lethal(2) giant larvae homologue lgl-1, which antagonizes aPKC within epithelia of Drosophila and mammals but was not known previously to function in C. elegans epithelia. Finally, two extragenic suppressors are loss-of-function alleles of sups-1, a previously uncharacterized gene. We show that SUPS-1 is an apical extracellular matrix protein expressed in epidermal cells, suggesting that it non-autonomously regulates junction formation in the spermatheca. These findings establish a foundation for dissecting the role of PKC-3 and interacting genes in epithelial junction maturation.
PMID: 32005655
ISSN: 1943-2631
CID: 4294502

Niche Cell Wrapping Ensures Primordial Germ Cell Quiescence and Protection from Intercellular Cannibalism

McIntyre, Daniel C; Nance, Jeremy
Niche cells often wrap membrane extensions around stem cell surfaces. Niche wrapping has been proposed to retain stem cells in defined positions and affect signaling [e.g., 1, 2]. To test these hypotheses and uncover additional functions of wrapping, we investigated niche wrapping of primordial germ cells (PGCs) in the C. elegans embryonic gonad primordium. The gonad primordium contains two PGCs that are wrapped individually by two somatic gonad precursor cells (SGPs). SGPs are known to promote PGC survival during embryogenesis and exit from quiescence after hatching, although how they do so is unknown [3]. Here, we identify two distinct functions of SGP wrapping that are critical for PGC quiescence and survival. First, niche cell wrapping templates a laminin-based basement membrane around the gonad primordium. Laminin and the basement membrane receptor dystroglycan function to maintain niche cell wrapping, which is critical for normal gonad development. We find that laminin also preserves PGC quiescence during embryogenesis. Exit from quiescence following laminin depletion requires glp-1/Notch and is accompanied by inappropriate activation of the GLP-1 target sygl-1 in PGCs. Independent of basement membrane, SGP wrapping performs a second, crucial function to ensure PGC survival. Endodermal cells normally engulf and degrade large lobes extended by the PGCs [4]. When SGPs are absent, we show that endodermal cells can inappropriately engulf and cannibalize the PGC cell body. Our findings demonstrate how niche cell wrapping protects germ cells by manipulating their signaling environment and by shielding germ cells from unwanted cellular interactions that can compromise their survival.
PMID: 32008902
ISSN: 1879-0445
CID: 4301182

An interphase contractile ring reshapes primordial germ cells to allow bulk cytoplasmic remodeling

Maniscalco, Chelsea; Hall, Allison E; Nance, Jeremy
Some cells discard undesired inherited components in bulk by forming large compartments that are subsequently eliminated. Caenorhabditis elegans primordial germ cells (PGCs) jettison mitochondria and cytoplasm by forming a large lobe that is cannibalized by intestinal cells. Although PGCs are nonmitotic, we find that lobe formation is driven by constriction of a contractile ring and requires the RhoGEF ECT-2, a RhoA activator also essential for cytokinesis. Whereas centralspindlin activates ECT-2 to promote cytokinetic contractile ring formation, we show that the ECT-2 regulator NOP-1, but not centralspindlin, is essential for PGC lobe formation. We propose that lobe contractile ring formation is locally inhibited by the PGC nucleus, which migrates to one side of the cell before the cytokinetic ring assembles on the opposite cortex. Our findings reveal how components of the cytokinetic contractile ring are reemployed during interphase to create compartments used for cellular remodeling, and they reveal differences in the spatial cues that dictate where the contractile ring will form.
PMID: 31819975
ISSN: 1540-8140
CID: 4238792

Caenorhabditis elegans Gastrulation: A Model for Understanding How Cells Polarize, Change Shape, and Journey Toward the Center of an Embryo

Goldstein, Bob; Nance, Jeremy
Gastrulation is fundamental to the development of multicellular animals. Along with neurulation, gastrulation is one of the major processes of morphogenesis in which cells or whole tissues move from the surface of an embryo to its interior. Cell internalization mechanisms that have been discovered to date in Caenorhabditis elegans gastrulation bear some similarity to internalization mechanisms of other systems including Drosophila, Xenopus, and mouse, suggesting that ancient and conserved mechanisms internalize cells in diverse organisms. C. elegans gastrulation occurs at an early stage, beginning when the embryo is composed of just 26 cells, suggesting some promise for connecting the rich array of developmental mechanisms that establish polarity and pattern in embryos to the force-producing mechanisms that change cell shapes and move cells interiorly. Here, we review our current understanding of C. elegans gastrulation mechanisms. We address how cells determine which direction is the interior and polarize with respect to that direction, how cells change shape by apical constriction and internalize, and how the embryo specifies which cells will internalize and when. We summarize future prospects for using this system to discover some of the general principles by which animal cells change shape and internalize during development.
PMID: 32029580
ISSN: 1943-2631
CID: 4301532

The Caenorhabditis elegans Transgenic Toolbox

Nance, Jeremy; Frøkjær-Jensen, Christian
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
PMID: 31405997
ISSN: 1943-2631
CID: 4043222