Try a new search

Format these results:

Searched for:

person:oconnc02

in-biosketch:yes

Total Results:

3


Micromanipulation of single cells and fingerprints for forensic identification

Ostojic, Lana; O'Connor, Craig; Wurmbach, Elisa
Crime scene samples often include biological stains, handled items, or worn clothes and may contain cells from various donors. Applying routine sample collection methods by using a portion of a biological stain or swabbing the entire suspected touched area of the evidence followed by DNA extraction often leads to DNA mixtures. Some mixtures can be addressed with sophisticated interpretation protocols and probabilistic genotyping software resulting in DNA profiles of their contributors. However, many samples remain unresolved, providing no investigative information. Samples with many contributors are often the most challenging samples in forensic biology. Examples include gang rape situations or where the perpetrator's DNA is present in traces among the overwhelming amounts of the victim's DNA. If this is the only available evidence in a case, it is of paramount importance to generate usable information. An alternative approach, to address biological mixtures, could be the collection of individual cells directly from the evidence and testing them separately. This method could prevent cells from being inadvertently blended during the extraction process, thus resulting in DNA mixtures. In this study, multiple tools coupled with adhesive microcarriers to collect single cells were evaluated. These were tested on epithelial (buccal) and sperm cells, as well as on touched items. Single cells were successfully collected but fingerprints were swabbed in their entirety to account for the extracellular DNA of these samples and the poor DNA quality of shed skin flakes. Furthermore, micromanipulation devices, such as the P.A.L.M.® and the Axio Zoom.V16 operated manually or with a robotic arm aureka®, were compared for their effectiveness in collecting cells. The P.A.L.M.® was suitable for single cell isolation when smeared on membrane slides. Manual or robotic manipulations, by utilizing the Axio Zoom.V16, have wider applications as they can be used to isolate cells from various substrates such as glass or membrane slides, tapes, or directly from the evidence. Manipulations using the Axio Zoom.V16, either with the robotic arm aureka® or manually, generated similar outcomes which were significantly better than the outcomes by using the P.A.L.M.®. Robotic manipulations using the aureka® produced more consistent results, but operating the aureka® required training and often needed re-calibrations. This made the process of cell manipulations slower than when manually operated. Our preferred method was the manual manipulations as it was fast, cost effective, required little training, but relied on a steady hand of the technician.
PMID: 33260060
ISSN: 1878-0326
CID: 4694122

Synthesis and evaluation of B-, C-, and D-ring-substituted estradiol carboxylic acid esters as locally active estrogens

Labaree, David C; Zhang, Jing-Xin; Harris, Heather A; O'Connor, Craig; Reynolds, Toni Y; Hochberg, Richard B
We have synthesized derivatives of estradiol that are structurally modified to serve as 'soft' estrogens and act within a geographically limited area of the body; estrogens without systemic action. We have previously shown with 16alpha-substituted analogues of estradiol that carboxylates proximal to the steroid ring neither bind to the estrogen receptor nor activate estrogen-responsive genes. However, when the carboxylic acid is masked as an ester, they bind to the receptor and stimulate estrogenic responses. Enzymatic hydrolysis through nonspecific esterases can inactivate these estrogens and thereby limit their area of action. Here, we describe our continued studies to design 'soft' estrogens by synthesizing carboxylic acid esters of estradiol at the 7alpha-, 11beta-, and 15alpha-positions in the steroid nucleus at which bulky substituents are accommodated by the estrogen receptor. These compounds were tested for estrogen receptor binding (estrogen receptors alpha and beta), stimulation of an estrogen sensitive gene in Ishikawa cells in culture, and as substrates for enzymatic hydrolysis. Likely candidates were tested in in vivo assays for systemic and local estrogenic action. The biological studies showed that regardless of the point of attachment, all of the short-chain carboxylic acids, C-1 to C-3, were devoid of hormonal action, while many of the esters were estrogenic. The site on the steroid nucleus had great influence on hormonal activity and esterase hydrolysis. Formate esters at 7alpha and 15alpha were good estrogens, but lengthening the chain to acetate dramatically decreased hormonal activity. However, the 7alpha-formate esters were not enzymatically hydrolyzed. At 11beta, the acetate (methyl ester) was an effective estrogen, but increasing the chain length to propionate dramatically reduced hormonal activity. In general, the length of the alcohol from methyl to butyl had only a small effect on receptor binding, and as the size of the alcohol increased, so did esterase hydrolysis. One exception was the 11beta-acetate esters where increasing the alcohol moiety from methyl to ethyl eliminated estrogenic activity (Ishikawa cells) without affecting estrogen receptor binding. Several of the esters were tested in vivo, and two, the methyl and ethyl esters of estradiol-15alpha-formate, appeared to have the requisite properties (high local and low systemic activity) of superior 'soft' estrogens
PMID: 12723952
ISSN: 0022-2623
CID: 97690

Synthesis of halogen-substituted pyridyl and pyrimidyl derivatives of [3,2-c]pyrazolo corticosteroids: strategies for the development of glucocorticoid receptor mediated imaging agents

Hoyte, Robert M; Zhang, Jing-xin; Lerum, Ronald; Oluyemi, Aladejebi; Persaud, Prita; O'Connor, Craig; Labaree, David C; Hochberg, Richard B
Ligands for the glucocorticoid receptor labeled with high-energy isotopes are highly desired for their potential applications in nuclear medical studies of the brain where the dysregulation of this receptor system is thought to be involved in various neurodegenerative disorders. Analogues of the glucocorticoid cortivazol have previously been prepared as target compounds for labeling with high-energy isotopes. However, the phenyl rings of arylpyrazoles of this type are not sufficiently activated for nucleophilic substitution reactions that are generally required for the synthesis of radiohalogenated analogues. Since suitably substituted aromatic nitrogen heterocyclic groups are amenable to nucleophilic substitution, the goal of this study was the synthesis of pyridylpyrazolo and pyrimidylpyrazolo analogues similar to cortivazol that could be labeled with radiohalogens in the pyridine or pyrimidine rings. We describe the synthesis of several [3,2-c]pyrazolo steroids containing pyridyl, halopyridyl, and pyrimidyl substituents at the 2' position of the pyrazole ring. These compounds were tested for binding to the glucocorticoid receptor and for biological activity in glucocorticoid responsive HeLa cells grown in tissue culture. Of the pyridyl and pyrimidyl derivatives, 2'-(3-pyridyl)-11 beta,17,21-trihydroxy-16 alpha-methyl-20-oxopregn-4-eno[3,2-c]pyrazole showed superior activity in both assays and it was used as the basis for the synthesis of several analogues that were halogenated in the pyridine ring. These halogenated compounds were all tested for their binding to the glucocorticoid receptor and for their biological activity. One, a fluorinated compound 2'-(2-fluoro-5-pyridyl)-11 beta,17,21-trihydroxy-16 alpha-methyl-20-oxopregn-4-eno[3,2-c]pyrazole had excellent activity, considerably better than the potent glucocorticoid dexamethasone. Most importantly, fluorination was achieved using a nucleophilic exchange reaction, a method that is adaptable to radiolabeling with the positron-emitting isotope fluorine-18. Thus, considering its superior biological activity and adaptability for facile radiosynthesis, this target compound has the potential for imaging of glucocorticoid receptor containing tissues using positron emission tomography
PMID: 12431067
ISSN: 0022-2623
CID: 97691