Try a new search

Format these results:

Searched for:

person:pillar02

in-biosketch:true

Total Results:

11


Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer

Pillai, Ray; LeBoeuf, Sarah E; Hao, Yuan; New, Connie; Blum, Jenna L E; Rashidfarrokhi, Ali; Huang, Shih Ming; Bahamon, Christian; Wu, Warren L; Karadal-Ferrena, Burcu; Herrera, Alberto; Ivanova, Ellie; Cross, Michael; Bossowski, Jozef P; Ding, Hongyu; Hayashi, Makiko; Rajalingam, Sahith; Karakousi, Triantafyllia; Sayin, Volkan I; Khanna, Kamal M; Wong, Kwok-Kin; Wild, Robert; Tsirigos, Aristotelis; Poirier, John T; Rudin, Charles M; Davidson, Shawn M; Koralov, Sergei B; Papagiannakopoulos, Thales
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.
PMID: 38536921
ISSN: 2375-2548
CID: 5644942

DON of Hope: Starving Pancreatic Cancer by Glutamine Antagonism

Pillai, Ray; Papagiannakopoulous, Thales
A promising approach to treat solid tumors involves disrupting their reliance on glutamine, a key component for various metabolic processes. Traditional attempts using glutamine inhibitors like 6-diazo-5-oxo-L-norleucine (DON) and CB-839 were unsuccessful, but new hope arises with DRP-104, a prodrug of DON. This compound effectively targets tumor metabolism while minimizing side effects. In a recent study published in Nature Cancer, Encarnación-Rosado and colleagues demonstrated in preclinical models that pancreatic ductal adenocarcinoma (PDAC) responds well to DRP-104, although tumors adapt through the MEK/ERK signaling pathway, which can be countered by the MEK inhibitor trametinib. In a related study, Recouvreux and colleagues found that DON is effective against pancreatic tumors, revealing that PDAC tumors upregulate asparagine synthesis in response to DON, making them susceptible to asparaginase treatment. Both studies underscore the potential of inhibiting glutamine metabolism and adaptive pathways as a promising strategy against PDAC. These findings pave the way for upcoming clinical trials utilizing DRP-104 and similar glutamine antagonists in the battle against solid tumors.
PMID: 38117482
ISSN: 1538-7445
CID: 5627922

KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance

Zavitsanou, Anastasia-Maria; Pillai, Ray; Hao, Yuan; Wu, Warren L; Bartnicki, Eric; Karakousi, Triantafyllia; Rajalingam, Sahith; Herrera, Alberto; Karatza, Angeliki; Rashidfarrokhi, Ali; Solis, Sabrina; Ciampricotti, Metamia; Yeaton, Anna H; Ivanova, Ellie; Wohlhieter, Corrin A; Buus, Terkild B; Hayashi, Makiko; Karadal-Ferrena, Burcu; Pass, Harvey I; Poirier, John T; Rudin, Charles M; Wong, Kwok-Kin; Moreira, Andre L; Khanna, Kamal M; Tsirigos, Aristotelis; Papagiannakopoulos, Thales; Koralov, Sergei B
Lung cancer treatment has benefited greatly through advancements in immunotherapies. However, immunotherapy often fails in patients with specific mutations like KEAP1, which are frequently found in lung adenocarcinoma. We established an antigenic lung cancer model and used it to explore how Keap1 mutations remodel the tumor immune microenvironment. Using single-cell technology and depletion studies, we demonstrate that Keap1-mutant tumors diminish dendritic cell and T cell responses driving immunotherapy resistance. This observation was corroborated in patient samples. CRISPR-Cas9-mediated gene targeting revealed that hyperactivation of the NRF2 antioxidant pathway is responsible for diminished immune responses in Keap1-mutant tumors. Importantly, we demonstrate that combining glutaminase inhibition with immune checkpoint blockade can reverse immunosuppression, making Keap1-mutant tumors susceptible to immunotherapy. Our study provides new insight into the role of KEAP1 mutations in immune evasion, paving the way for novel immune-based therapeutic strategies for KEAP1-mutant cancers.
PMID: 37889752
ISSN: 2211-1247
CID: 5590262

Digital spatial profiling to predict recurrence in grade 3 stage I lung adenocarcinoma

Chang, Stephanie H; Mezzano-Robinson, Valeria; Zhou, Hua; Moreira, Andre; Pillai, Raymond; Ramaswami, Sitharam; Loomis, Cynthia; Heguy, Adriana; Tsirigos, Aristotelis; Pass, Harvey I
OBJECTIVE:Early-stage lung adenocarcinoma is treated with local therapy alone, although patients with grade 3 stage I lung adenocarcinoma have a 50% 5-year recurrence rate. Our objective is to determine if analysis of the tumor microenvironment can create a predictive model for recurrence. METHODS:Thirty-four patients with grade 3 stage I lung adenocarcinoma underwent surgical resection. Digital spatial profiling was used to perform genomic (n = 31) and proteomic (n = 34) analyses of pancytokeratin positive and negative tumor cells. K-means clustering was performed on the top 50 differential genes and top 20 differential proteins, with Kaplan-Meier recurrence curves based on patient clustering. External validation of high-expression genes was performed with Kaplan-Meier plotter. RESULTS:There were no significant clinicopathologic differences between patients who did (n = 14) and did not (n = 20) have recurrence. Median time to recurrence was 806 days; median follow-up with no recurrence was 2897 days. K-means clustering of pancytokeratin positive genes resulted in a model with a Kaplan-Meier curve with concordance index of 0.75. K-means clustering for pancytokeratin negative genes was less successful at differentiating recurrence (concordance index 0.6). Genes upregulated or downregulated for recurrence were externally validated using available public databases. Proteomic data did not reach statistical significance but did internally validate the genomic data described. CONCLUSIONS:Genomic difference in lung adenocarcinoma may be able to predict risk of recurrence. After further validation, stratifying patients by this risk may help guide who will benefit from adjuvant therapy.
PMID: 37890657
ISSN: 1097-685x
CID: 5620342

NRF2: KEAPing Tumors Protected

Pillai, Ray; Hayashi, Makiko; Zavitsanou, Anastasia-Maria; Papagiannakopoulos, Thales
The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway plays a physiologic protective role against xenobiotics and reactive oxygen species. However, activation of NRF2 provides a powerful selective advantage for tumors by rewiring metabolism to enhance proliferation, suppress various forms of stress, and promote immune evasion. Genetic, epigenetic, and posttranslational alterations that activate the KEAP1/NRF2 pathway are found in multiple solid tumors. Emerging clinical data highlight that alterations in this pathway result in resistance to multiple therapies. Here, we provide an overview of how dysregulation of the KEAP1/NRF2 pathway in cancer contributes to several hallmarks of cancer that promote tumorigenesis and lead to treatment resistance. SIGNIFICANCE: Alterations in the KEAP1/NRF2 pathway are found in multiple cancer types. Activation of NRF2 leads to metabolic rewiring of tumors that promote tumor initiation and progression. Here we present the known alterations that lead to NRF2 activation in cancer, the mechanisms in which NRF2 activation promotes tumors, and the therapeutic implications of NRF2 activation.
PMID: 35101864
ISSN: 2159-8290
CID: 5153422

The effect of lower airway dysbiosis on pd-1 therapy in lung cancer [Meeting Abstract]

Tsay, J J; Wu, B; Pillai, R; Sulaiman, I; Carpenito, J; Li, Y; Segal, L N
Rational Recent investigations support that the gut microbiota influences anti-PD-1 cancer immunotherapy. Lower airway dysbiosis with enrichment with oral commensals are associated with lung cancer. Recently we had shown, in both a prospective human cohort and preclinical mice model, that lung dysbiotic signatures were associated with clinical lung cancer prognosis and progression. To further understand the role of lung dysbiosis in lung cancer, we examined the role of PD-1 expression and anti- PD treatment in a lung cancer and lung dysbiotic model. Method KrasLSL-G12D/+;p53fl/fl Non-small cell Lung Cancer mice (KP) were challenged with an oral commensal, Veillonella parvula, through intra-tracheal inoculation and exposed to immune inhibition (anti- PD-1). Measurements included tumor burden and lower airway inflammatory markers (PD-1 expression and neutrophils) by FACS. Results In a preclinical lung cancer model, inoculation with Veillonella parvula, a marker taxon for the dysbiotic signature found in humans, led to: 1) decrease survival with increase tumor burden; 2) dysbiosis with oral commensal is associated with elevated level of PD-1 expression and neutrophils level compared to control. With exposure to PD-1 inhibition we observe a reverse of tumor growth (at day 7); there was significant decrease in tumor growth compared with Isotype-control (p=0.030, day7-14) and observed that PD-1+ level (p=0.0007) and Neutrophil level (p=0.0027) were lower as well. Discussion Our study suggests that lower airway dysbiosis induced by microaspiration of oral commensals may affect lung carcinogenesis due to increase in inflammatory markers and increase in the checkpoint inhibitor tone in the lower airways that may lead to suboptimal immune surveillance. These effects of lower airway dysbiosis can be partially blunted by PD-1 blockade. These data supports that treatment in lung cancer may be influenced by lower airway dysbiosis and dynamic changes in the microbial-host interaction in the lower airways
EMBASE:635307037
ISSN: 1535-4970
CID: 4915732

Lower airway dysbiosis affects lung cancer progression

Tsay, Jun-Chieh J; Wu, Benjamin G; Sulaiman, Imran; Gershner, Katherine; Schluger, Rosemary; Li, Yonghua; Yie, Ting-An; Meyn, Peter; Olsen, Evan; Perez, Luisannay; Franca, Brendan; Carpenito, Joseph; Iizumi, Tadasu; El-Ashmawy, Mariam; Badri, Michelle; Morton, James T; Shen, Nan; He, Linchen; Michaud, Gaetane; Rafeq, Samaan; Bessich, Jamie L; Smith, Robert L; Sauthoff, Harald; Felner, Kevin; Pillai, Ray; Zavitsanou, Anastasia-Maria; Koralov, Sergei B; Mezzano, Valeria; Loomis, Cynthia A; Moreira, Andre L; Moore, William; Tsirigos, Aristotelis; Heguy, Adriana; Rom, William N; Sterman, Daniel H; Pass, Harvey I; Clemente, Jose C; Li, Huilin; Bonneau, Richard; Wong, Kwok-Kin; Papagiannakopoulos, Thales; Segal, Leopoldo N
In lung cancer, enrichment of the lower airway microbiota with oral commensals commonly occurs and ex vivo models support that some of these bacteria can trigger host transcriptomic signatures associated with carcinogenesis. Here, we show that this lower airway dysbiotic signature was more prevalent in group IIIB-IV TNM stage lung cancer and is associated with poor prognosis, as shown by decreased survival among subjects with early stage disease (I-IIIA) and worse tumor progression as measured by RECIST scores among subjects with IIIB-IV stage disease. In addition, this lower airway microbiota signature was associated with upregulation of IL-17, PI3K, MAPK and ERK pathways in airway transcriptome, and we identified Veillonella parvula as the most abundant taxon driving this association. In a KP lung cancer model, lower airway dysbiosis with V. parvula led to decreased survival, increased tumor burden, IL-17 inflammatory phenotype and activation of checkpoint inhibitor markers.
PMID: 33177060
ISSN: 2159-8290
CID: 4663012

Assessment of Pulse Oximetry Waveforms Before and After Hemodialysis and Ultrafiltration in Critically Ill Patients May Reflect Changes in Intravascular Volume Status [Meeting Abstract]

Stern, Ken; Chowdhury, Shadman; Kaptein, Elaine; Pillai, Ray; Baydur, Ahmet
ISI:000400118601052
ISSN: 0012-3692
CID: 3332622

Pulmonary Eosinophilia Secondary to Topiramate Use [Meeting Abstract]

Pillai, Ray; Doo, Kathleen; Chitkara, Nishay
ISI:000400118601207
ISSN: 0012-3692
CID: 3332632

Systemic Mastocytosis With Pulmonary Involvement [Meeting Abstract]

Pillai, Ray; Maehara, Darren; Chitkara, Nishay
ISI:000400118602251
ISSN: 0012-3692
CID: 3332642