Try a new search

Format these results:

Searched for:

person:rosenp03

Total Results:

36


Low incidence and transient elevation of autoantibodies post mRNA COVID-19 vaccination in inflammatory arthritis

Blank, Rebecca B; Haberman, Rebecca H; Qian, Kun; Samanovic, Marie; Castillo, Rochelle; Jimenez Hernandez, Anthony; Vasudevapillai Girija, Parvathy; Catron, Sydney; Uddin, Zakwan; Rackoff, Paula; Solomon, Gary; Azar, Natalie; Rosenthal, Pamela; Izmirly, Peter; Samuels, Jonathan; Golden, Brian; Reddy, Soumya; Mulligan, Mark J; Hu, Jiyuan; Scher, Jose U
OBJECTIVES/OBJECTIVE:Autoantibody seroconversion has been extensively studied in the context of COVID-19 infection but data regarding post-vaccination autoantibody production is lacking. Here we aimed to determine the incidence of common autoantibody formation following mRNA COVID-19 vaccines in patients with inflammatory arthritis (IA) and in healthy controls. METHODS:Autoantibody seroconversion was measured by serum ELISA in a longitudinal cohort of IA participants and healthy controls before and after COVID-19 mRNA-based immunization. RESULTS:Overall, there was a significantly lower incidence of ANA seroconversion in participants who did not contract COVID-19 prior to vaccination compared with those who been previously infected (7.4% vs 24.1%, p= 0.014). Incidence of de novo anti-cyclic citrullinated protein (CCP) seroconversion in all participants was low at 4.9%. Autoantibody levels were typically of low titer, transient, and not associated with increase in IA flares. CONCLUSIONS:In both health and inflammatory arthritis, the risk of autoantibody seroconversion is lower following mRNA-based immunization than following natural SARS-CoV-2 infection. Importantly, seroconversion does not correlate with self-reported IA disease flare risk, further supporting the encouragement of mRNA-based COVID-19 immunization in the IA population.
PMID: 35640110
ISSN: 1462-0332
CID: 5235902

Ticagrelor added to methotrexate improves rheumatoid arthritis disease severity

Garshick, Michael S; Rosenthal, Pamela B; Luttrell-Williams, Elliot; Cronstein, Bruce N; Berger, Jeffrey S
PMID: 34142122
ISSN: 1462-0332
CID: 4950932

Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease

Haberman, Rebecca H; Herati, Ramin; Simon, David; Samanovic, Marie; Blank, Rebecca B; Tuen, Michael; Koralov, Sergei; Atreya, Raja; Tascilar, Koray; Allen, Joseph; Castillo, Rochelle; Cornelius, Amber; Rackoff, Paula; Solomon, Gary; Adhikari, Samrachana; Azar, Natalie; Rosenthal, Pamela; Izmirly, Peter; Samuels, Jonathan; Golden, Brian; Reddy, Soumya M; Neurath, Markus; Abramson, Steven B; Schett, Georg; Mulligan, Mark; Scher, Jose U
PMID: 34035003
ISSN: 1468-2060
CID: 4888812

Methotrexate hampers immunogenicity to BNT162B2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease [Meeting Abstract]

Haberman, R; Herati, R; Simon, D; Samanovic, M; Tuen, M; Blank, R; Koralov, S; Atreya, R; Tascilar, K; Allen, J; Castillo, R; Cornelius, A; Rackoff, P; Solomon, G; Adhikari, S; Azar, N; Rosenthal, P; Izmirly, P; Samuels, J; Golden, B; Reddy, S; Neurath, M; Abramson, S B; Schett, G; Mulligan, M; Scher, J
Background/Purpose: Patients with immune mediated inflammatory disorders (IMIDs) have an inherently heightened susceptibility to infection and may be considered high risk for developing COVID-19. While data regarding the COVID-19 vaccine's immunogenicity in an immunocompetent adult population is rapidly emerging, the ability of IMID patients to adequately respond to these vaccines is not known. Here, we investigate the humoral and cellular immune response to mRNA COVID-19 vaccines in patients with IMIDs on immunomodulatory treatment Methods: Patients with immune mediated inflammatory disorders (IMIDs) have an inherently heightened susceptibility to infection and may be considered high risk for developing COVID-19. While data regarding the COVID-19 vaccine's immunogenicity in an immunocompetent adult population is rapidly emerging, the ability of IMID patients to adequately respond to these vaccines is not known. Here, we investigate the humoral and cellular immune response to mRNA COVID-19 vaccines in patients with IMIDs on immunomodulatory treatment.
Result(s): The NY cohort baseline characteristics are found in Table 1. The Erlangen cohort consisted of 182 healthy subjects, 11 subjects with IMID receiving TNFi monotherapy, and 20 subjects with IMID on MTX monotherapy. In both cohorts, healthy individuals and those with IMID not on MTX were similar in age, while those IMID patients receiving MTX were generally older. In the NY cohort, of the healthy participants, 96.3% demonstrated adequate humoral immune response. Patients with IMID not on MTX achieved a similar rate of high antibody response rate (91.8%), while those on MTX had a lower rate of adequate humoral response (75.0%) (Figure 1A). This remains true even after the exclusion of patients who had evidence of prior COVID-19 infection (P= 0.014). Of note, 3 out of the 4 IMID patients receiving rituximab did not produce an adequate response. Similarly, in the Erlangen validation cohort, 98.3% of healthy controls, 90.9% of patients with IMID receiving TNFi monotherapy, and 50.0% receiving MTX monotherapy achieved adequate immunogenicity (Figure 1B). These differences remain significant when combining the cohorts, using a stricter definition of adequate response, and in a subgroup analysis by age. Cellular response was also analyzed in a subgroup of the NY cohort before and after second vaccination. Activated CD8+ T cells (CD8+ T cells expressing Ki67 and CD38) and the granzyme B-producing subset of these activated CD8+ T cells, were induced in immunocompetent adults and those with IMID not on MTX, but not induced in patients receiving MTX (Figure 2).
Conclusion(s): In two independent cohorts of IMID patients, MTX, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking MTX to increase the chances of immunization efficacy against SARS-CoV-2, as has been demonstrated for other viral vaccines
PMCID:
EMBASE:637275567
ISSN: 2326-5205
CID: 5164692

Corrigendum to: Focal small bowel thrombotic microvascular injury in COVID-19 mediated by the lectin complement pathway masquerading as lupus enteritis

Plotz, Benjamin; Castillo, Rochelle; Melamed, Jonathan; Nuovo, Gerard; Magro, Cynthia; Rosenthal, Pamela; Belmont, H Michael
PMID: 34096576
ISSN: 1462-0332
CID: 4906012

The Pre-treatment Gut Microbiome is Associated with Lack of Response to Methotrexate in New Onset Rheumatoid Arthritis

Artacho, Alejandro; Isaac, Sandrine; Nayak, Renuka; Flor-Duro, Alejandra; Alexander, Margaret; Koo, Imhoi; Manasson, Julia; Smith, Philip B; Rosenthal, Pamela; Homsi, Yamen; Gulko, Percio; Pons, Javier; Puchades-Carrasco, Leonor; Izmirly, Peter; Patterson, Andrew; Abramson, Steven B; Pineda-Lucena, Antonio; Turnbaugh, Peter J; Ubeda, Carles; Scher, Jose U
OBJECTIVES/OBJECTIVE:Although oral methotrexate (MTX) remains the anchor drug for RA, up to 50% of patients do not achieve a clinically adequate outcome. Concomitantly, there is a lack of prognostic tools for treatment response prior to drug initiation. Here we study whether inter-individual differences in the human gut microbiome can aid in the prediction of MTX efficacy in new-onset RA (NORA). METHODS:16S rRNA gene and shotgun metagenomic sequencing were performed on the baseline gut microbiomes of drug-naïve, NORA patients (n=26). Results were validated in an additional independent cohort (n=21). To gain insight into potential microbial mechanisms, ex vivo experiments coupled with metabolomics analysis evaluated the association between microbiome-driven MTX depletion and clinical response. RESULTS:Our analysis revealed significant associations between the abundance of gut bacterial taxa and their genes with future clinical response, including orthologs related to purine and methotrexate metabolism. Machine learning techniques were applied to the metagenomic data, resulting in a microbiome-based model that predicts lack of response to MTX in an independent group of patients. Finally, MTX levels remaining after ex vivo incubation with distal gut samples from pre-treatment RA patients significantly correlated with the magnitude of future clinical response, suggesting a possible direct effect of the gut microbiome on MTX metabolism and treatment outcomes. CONCLUSIONS:Together, these results provide the first step towards predicting lack of response to oral MTX in NORA patients and support the value of the gut microbiome as a possible prognostic tool and as a potential target in RA therapeutics.
PMID: 33314800
ISSN: 2326-5205
CID: 4717542

Methotrexate Hampers Immunogenicity to BNT162b2 mRNA COVID-19 Vaccine in Immune-Mediated Inflammatory Disease

Haberman, Rebecca H; Herati, Ramin Sedaghat; Simon, David; Samanovic, Marie; Blank, Rebecca B; Tuen, Michael; Koralov, Sergei B; Atreya, Raja; Tascilar, Koray; Allen, Joseph R; Castillo, Rochelle; Cornelius, Amber R; Rackoff, Paula; Solomon, Gary; Adhikari, Samrachana; Azar, Natalie; Rosenthal, Pamela; Izmirly, Peter; Samuels, Jonathan; Golden, Brian; Reddy, Soumya; Neurath, Markus; Abramson, Steven B; Schett, Georg; Mulligan, Mark J; Scher, Jose U
Objective/UNASSIGNED:To investigate the humoral and cellular immune response to mRNA COVID-19 vaccines in patients with immune-mediated inflammatory diseases (IMIDs) on immunomodulatory treatment. Methods/UNASSIGNED:Established patients at NYU Langone Health with IMID (n=51) receiving the BNT162b2 mRNA vaccination were assessed at baseline and after second immunization. Healthy subjects served as controls (n=26). IgG antibody responses to the spike protein were analyzed for humoral response. Cellular immune response to SARS-CoV-2 was further analyzed using high-parameter spectral flow cytometry. A second independent, validation cohort of controls (n=182) and patients with IMID (n=31) from Erlangen, Germany were also analyzed for humoral immune response. Results/UNASSIGNED:Although healthy subjects (n=208) and IMID patients on biologic treatments (mostly on TNF blockers, n=37) demonstrate robust antibody responses (over 90%), those patients with IMID on background methotrexate (n=45) achieve an adequate response in only 62.2% of cases. Similarly, IMID patients do not demonstrate an increase in CD8+ T cell activation after vaccination. Conclusions/UNASSIGNED:In two independent cohorts of IMID patients, methotrexate, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking methotrexate to increase the chances of immunization efficacy against SARS-CoV-2 as has been demonstrated for augmenting immunogenicity to other viral vaccines. KEY MESSAGES/UNASSIGNED:These results suggest that patients on methotrexate may need alternate vaccination strategies such as additional doses of vaccine, dose modification of methotrexate, or even a temporary discontinuation of this drug. Further studies will be required to explore the effect of these approaches on mRNA vaccine immunogenicity.
PMCID:8132259
PMID: 34013285
ISSN: n/a
CID: 4877422

Focal small bowel thrombotic microvascular injury in COVID-19 mediated by the lectin complement pathway masquerading as lupus enteritis [Letter]

Plotz, Benjamin; Castillo, Rochelle; Melamed, Jonathan; Magro, Cynthia; Rosenthal, Pamela; Belmont, H Michael
PMCID:7665776
PMID: 33147605
ISSN: 1462-0332
CID: 4835212

The combination of an inflammatory peripheral blood gene expression and imaging biomarkers enhance prediction of radiographic progression in knee osteoarthritis

Attur, Mukundan; Krasnokutsky, Svetlana; Zhou, Hua; Samuels, Jonathan; Chang, Gregory; Bencardino, Jenny; Rosenthal, Pamela; Rybak, Leon; Huebner, Janet L; Kraus, Virginia B; Abramson, Steven B
OBJECTIVE:Predictive biomarkers of progression in knee osteoarthritis are sought to enable clinical trials of structure-modifying drugs. A peripheral blood leukocyte (PBL) inflammatory gene signature, MRI-based bone marrow lesions (BML) and meniscus extrusion scores, meniscal lesions, and osteophytes on X-ray each have been shown separately to predict radiographic joint space narrowing (JSN) in subjects with symptomatic knee osteoarthritis (SKOA). In these studies, we determined whether the combination of the PBL inflammatory gene expression and these imaging findings at baseline enhanced the prognostic value of either alone. METHODS:PBL inflammatory gene expression (increased mRNA for IL-1β, TNFα, and COX-2), routine radiographs, and 3T knee MRI were assessed in two independent populations with SKOA: an NYU cohort and the Osteoarthritis Initiative (OAI). At baseline and 24 months, subjects underwent standardized fixed-flexion knee radiographs and knee MRI. Medial JSN (mJSN) was determined as the change in medial JSW. Progressors were defined by an mJSN cut-point (≥ 0.5 mm/24 months). Models were evaluated by odds ratios (OR) and area under the receiver operating characteristic curve (AUC). RESULTS:We validated our prior finding in these two independent (NYU and OAI) cohorts, individually and combined, that an inflammatory PBL inflammatory gene expression predicted radiographic progression of SKOA after adjustment for age, sex, and BMI. Similarly, the presence of baseline BML and meniscal lesions by MRI or semiquantitative osteophyte score on X-ray each predicted radiographic medial JSN at 24 months. The combination of the PBL inflammatory gene expression and medial BML increased the AUC from 0.66 (p = 0.004) to 0.75 (p < 0.0001) and the odds ratio from 6.31 to 19.10 (p < 0.0001) in the combined cohort of 473 subjects. The addition of osteophyte score to BML and PBL inflammatory gene expression further increased the predictive value of any single biomarker. A causal analysis demonstrated that the PBL inflammatory gene expression and BML independently influenced mJSN. CONCLUSION/CONCLUSIONS:The use of the PBL inflammatory gene expression together with imaging biomarkers as combinatorial predictive biomarkers, markedly enhances the identification of radiographic progressors. The identification of the SKOA population at risk for progression will help in the future design of disease-modifying OA drug trials and personalized medicine strategies.
PMID: 32912331
ISSN: 1478-6362
CID: 4589512

The pre-treatment gut microbiome predicts early response to methotrexate in rheumatoid arthritis [Meeting Abstract]

Isaac, S; Artacho, A; Nayak, R; Abramson, S B; Alexander, M; Koo, I; Rosenthal, P; Izmirly, P; Patterson, A; Pineda, A; Puchades-Carrasco, L; Turnbaugh, P; Ubeda, C; Scher, J
Background/Purpose : Early treatment initiation in rheumatoid arthritis (RA) is fundamental to avoid chronic joint destruction and disability. Despite remarkable advances in RA therapeutics, oral methotrexate (MTX) remains the anchor drug and mainstay of treatment worldwide. However, MTX bioavailability has a wide inter-individual variability and >50% of patients with moderate or severe RA show no or suboptimal improvement in their symptoms in response to MTX. The reasons for these disparities in treatment response remain unclear. Prior studies have shown that the biotransformation of MTX is altered in germ-free and microbiome-depleted mice, prompting us to hypothesize that inter-individual differences in the human gut microbiome could impact drug bioavailability and thus clinical efficacy. We sought to determine differences in the microbiome of drug-naive, new onset RA (NORA) patients that could predict response to MTX therapy. Methods : We enrolled 27 drug-naive, NORA patients priori to MTX initiation (test cohort), and classified them as either MTX-responders (MTX-R; 39% of the cohort) or non-responders (MTX-NR; 61%) based on a stringent definition of clinical response (delta improvement of DAS28 >1.8 by month 4). We performed 16S rRNA gene and Shotgun Metagenomic sequencing on the baseline gut microbiomes of these NORA patients and confirmed the results in an independent validation cohort (n=31). NMR and LC-MS were performed in ex vivo incubations to measure the capacity of each NORA microbiome to metabolize MTX. Results : Our analysis revealed significant associations between the abundance of gut bacterial taxa and future MTX response. Patients that responded to therapy had significantly lower microbial diversity (p< 0.05). A significant difference in overall gut microbial community structure was also observed between groups (Bray-Curtis distance; PERMANOVA < 0.05). At the class level, we observed statistically higher abundance of Clostridia and lower abundance of Bacteroidia in MTX-NR (p< 0.05; q< 0.2). Furthermore, the baseline metagenome separated most MTX-R from MTX-NR (PCoA; PERMANOVA p< 0.05). We identified 8 microbial modules and 23 pathways, whose abundance significantly differed between groups (p< 0.05, q< 0.2), including genes related with purine and MTX metabolism, indicating a major difference in metabolic and biosynthetic potential between the microbiome of MTX-R and MTX-NR patients. Machine learning techniques were applied to this metagenomic data, resulting in a robust model based on bacterial gene abundance that accurately predicted response to MTX in an independent cohort. Finally, MTX available levels remaining after ex vivo incubation with distal gut samples from pre-treatment RA patients significantly correlated with the magnitude of future clinical response, suggesting a direct effect of the gut microbiome on MTX bioavailability and response to therapy. Conclusion : Together, these results provide the first step towards predicting response to oral MTX in NORA patients and support the utility of the gut microbiome as a prognostic tool and perhaps even as a target for manipulation in the treatment of rheumatic and autoimmune disease
EMBASE:633057879
ISSN: 2326-5205
CID: 4633852