Try a new search

Format these results:

Searched for:

person:salzej01

Total Results:

128


Schwann Cell Development and Myelination

Salzer, James; Feltri, M Laura; Jacob, Claire
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
PMID: 38503507
ISSN: 1943-0264
CID: 5640432

Glia trigger endocytic clearance of axonal proteins to promote rodent myelination

Bekku, Yoko; Zotter, Brendan; You, Changjiang; Piehler, Jacob; Leonard, Warren J; Salzer, James L
Axons undergo striking changes in their content and distribution of cell adhesion molecules (CAMs) and ion channels during myelination that underlies the switch from continuous to saltatory conduction. These changes include the removal of a large cohort of uniformly distributed CAMs that mediate initial axon-Schwann cell interactions and their replacement by a subset of CAMs that mediate domain-specific interactions of myelinated fibers. Here, using rodent models, we examine the mechanisms and significance of this removal of axonal CAMs. We show that Schwann cells just prior to myelination locally activate clathrin-mediated endocytosis (CME) in axons, thereby driving clearance of a broad array of axonal CAMs. CAMs engineered to resist endocytosis are persistently expressed along the axon and delay both PNS and CNS myelination. Thus, glia non-autonomously activate CME in axons to downregulate axonal CAMs and presumptively axo-glial adhesion. This promotes the transition from ensheathment to myelination while simultaneously sculpting the formation of axonal domains.
PMID: 38309265
ISSN: 1878-1551
CID: 5627032

Neural stem cells and oligodendrocyte progenitor cells compete for remyelination in the corpus callosum

Moyon, Sarah; Holloman, Mara; Salzer, James L.
A major therapeutic goal in demyelinating diseases, such as Multiple Sclerosis, is to improve remyelination, thereby restoring effective axon conduction and preventing neurodegeneration. In the adult central nervous system (CNS), parenchymal oligodendrocyte progenitor cells (pOPCs) and, to a lesser extent, pre-existing oligodendrocytes (OLs) and oligodendrocytes generated from neural stem cells (NSCs) in the sub-ventricular zone (SVZ) are capable of forming new myelin sheaths. Due to their self-renewal capabilities and the ability of their progeny to migrate widely within the CNS, NSCs represent an additional source of remyelinating cells that may be targeted to supplement repair by pOPCs. However, in demyelinating disorders and disease models, the NSC contribution to myelin repair is modest and most evident in regions close to the SVZ. We hypothesized that NSC-derived cells may compete with OPCs to remyelinate the same axons, with pOPCs serving as the primary remyelinating cells due to their widespread distribution within the adult CNS, thereby limiting the contribution of NSC-progeny. Here, we have used a dual reporter, genetic fate mapping strategy, to characterize the contribution of pOPCs and NSC-derived OLs to remyelination after cuprizone-induced demyelination. We confirmed that, while pOPCs are the main remyelinating cells in the corpus callosum, NSC-derived cells are also activated and recruited to demyelinating lesions. Blocking pOPC differentiation genetically, resulted in a significant increase in the recruitment NSC-derived cells into the demyelinated corpus callosum and their differentiation into OLs. These results strongly suggest that pOPCs and NSC-progeny compete to repair white matter lesions. They underscore the potential significance of targeting NSCs to improve repair when the contribution of pOPCs is insufficient to affect full remyelination.
SCOPUS:85147662714
ISSN: 1662-5102
CID: 5424962

Gli1 regulates the postnatal acquisition of peripheral nerve architecture

Zotter, Brendan; Dagan, Or; Brady, Jacob; Baloui, Hasna; Samanta, Jayshree; Salzer, James L
Peripheral nerves are organized into discrete compartments. Axons, Schwann cells (SCs), and endoneurial fibroblasts (EFs) reside within the endoneurium and are surrounded by the perineurium - a cellular sheath comprised of layers of perineurial glia (PNG). SC secretion of Desert Hedgehog (Dhh) regulates this organization. In Dhh nulls, the perineurium is deficient and the endoneurium is subdivided into small compartments termed minifascicles. Human Dhh mutations cause a neuropathy with similar defects. Here we examine the role of Gli1, a canonical transcriptional effector of hedgehog signaling, in regulating peripheral nerve organization in mice of both genders. We identify PNG, EFs, and pericytes as Gli1-expressing cells by genetic fate mapping. Although expression of Dhh by SCs and Gli1 in target cells is coordinately regulated with myelination, Gli1 expression unexpectedly persists in Dhh null EFs. Thus, Gli1 is expressed in EFs non-canonically i.e., independent of hedgehog signaling. Gli1 and Dhh also have non-redundant activities. Unlike Dhh nulls, Gli1 nulls have a normal perineurium. Like Dhh nulls, Gli1 nulls form minifascicles, which we show likely arise from EFs. Thus, Dhh and Gli1 are independent signals: Gli1 is dispensable for perineurial development but functions cooperatively with Dhh to drive normal endoneurial development. During development, Gli1 also regulates endoneurial extracellular matrix production, nerve vascular organization, and has modest, non-autonomous effects on SC sorting and myelination of axons. Finally, in adult nerves, induced deletion of Gli1 is sufficient to drive minifascicle formation. Thus, Gli1 regulates the development and is required to maintain the endoneurial architecture of peripheral nerves.SIGNIFICANCE STATEMENTPeripheral nerves are organized into distinct cellular/ECM compartments: the epineurium, perineurium and endoneurium. This organization, with its associated cellular constituents, are critical for the structural and metabolic support of nerves and their response to injury. Here, we show Gli1 - a transcription factor normally expressed downstream of hedgehog signaling - is required for the proper organization of the endoneurium but not the perineurium. Unexpectedly, Gli1 expression by endoneurial cells is independent of, and functions non-redundantly with, Schwann Cell-derived Desert Hedgehog in regulating peripheral nerve architecture. These results further delineate how peripheral nerves acquire their distinctive organization during normal development and highlight mechanisms that may regulate their reorganization in pathologic settings including peripheral neuropathies and nerve injury.
PMID: 34772739
ISSN: 1529-2401
CID: 5050902

Transcriptomic analysis of loss of Gli1 in neural stem cells responding to demyelination in the mouse brain

Samanta, Jayshree; Silva, Hernandez Moura; Lafaille, Juan J; Salzer, James L
In the adult mammalian brain, Gli1 expressing neural stem cells reside in the subventricular zone and their progeny are recruited to sites of demyelination in the white matter where they generate new oligodendrocytes, the myelin forming cells. Remarkably, genetic loss or pharmacologic inhibition of Gli1 enhances the efficacy of remyelination by these neural stem cells. To understand the molecular mechanisms involved, we performed a transcriptomic analysis of this Gli1-pool of neural stem cells. We compared murine NSCs with either intact or deficient Gli1 expression from adult mice on a control diet or on a cuprizone diet which induces widespread demyelination. These data will be a valuable resource for identifying therapeutic targets for enhancing remyelination in demyelinating diseases like multiple sclerosis.
PMCID:8553940
PMID: 34711861
ISSN: 2052-4463
CID: 5042772

Dual Color, Live Imaging of Vesicular Transport in Axons of Cultured Sensory Neurons

Bekku, Yoko; Salzer, James L
The function of neurons in afferent reception, integration, and generation of electrical activity relies on their strikingly polarized organization, characterized by distinct membrane domains. These domains have different compositions resulting from a combination of selective targeting and retention of membrane proteins. In neurons, most proteins are delivered from their site of synthesis in the soma to the axon via anterograde vesicular transport and undergo retrograde transport for redistribution and/or lysosomal degradation. A key question is whether proteins destined for the same domain are transported in separate vesicles for local assembly or whether these proteins are pre-assembled and co-transported in the same vesicles for delivery to their cognate domains. To assess the content of transport vesicles, one strategy relies on staining of sciatic nerves after ligation, which drives the accumulation of anterogradely and retrogradely transported vesicles on the proximal and distal side of the ligature, respectively. This approach may not permit confident assessment of the nature of the intracellular vesicles identified by staining, and analysis is limited to the availability of suitable antibodies. Here, we use dual color live imaging of proteins labeled with different fluorescent tags, visualizing anterograde and retrograde axonal transport of several proteins simultaneously. These proteins were expressed in rat dorsal root ganglion (DRG) neurons cultured alone or with Schwann cells under myelinating conditions to assess whether glial cells modify the patterns of axonal transport. Advantages of this protocol are the dynamic identification of transport vesicles and characterization of their content for various proteins that is not limited by available antibodies.
PMCID:8260256
PMID: 34263008
ISSN: 2331-8325
CID: 4938782

Activated microglia drive demyelination via CSF1R signaling

Marzan, Dave E; Brügger-Verdon, Valérie; West, Brian L; Liddelow, Shane; Samanta, Jayshree; Salzer, James L
Microgliosis is a prominent pathological feature in many neurological diseases including multiple sclerosis (MS), a progressive auto-immune demyelinating disorder. The precise role of microglia, parenchymal central nervous system (CNS) macrophages, during demyelination, and the relative contributions of peripheral macrophages are incompletely understood. Classical markers used to identify microglia do not reliably discriminate between microglia and peripheral macrophages, confounding analyses. Here, we use a genetic fate mapping strategy to identify microglia as predominant responders and key effectors of demyelination in the cuprizone (CUP) model. Colony-stimulating factor 1 (CSF1), also known as macrophage colony-stimulating factor (M-CSF) - a secreted cytokine that regulates microglia development and survival-is upregulated in demyelinated white matter lesions. Depletion of microglia with the CSF1R inhibitor PLX3397 greatly abrogates the demyelination, loss of oligodendrocytes, and reactive astrocytosis that results from CUP treatment. Electron microscopy (EM) and serial block face imaging show myelin sheaths remain intact in CUP treated mice depleted of microglia. However, these CUP-damaged myelin sheaths are lost and robustly phagocytosed upon-repopulation of microglia. Direct injection of CSF1 into CNS white matter induces focal microgliosis and demyelination indicating active CSF1 signaling can promote demyelination. Finally, mice defective in adopting a toxic astrocyte phenotype that is driven by microglia nevertheless demyelinate normally upon CUP treatment implicating microglia rather than astrocytes as the primary drivers of CUP-mediated demyelination. Together, these studies indicate activated microglia are required for and can drive demyelination directly and implicate CSF1 signaling in these events.
PMID: 33620118
ISSN: 1098-1136
CID: 4794442

Relative Levels of Gli1 and Gli2 Determine the Response of Ventral Neural Stem Cells to Demyelination

Radecki, Daniel Z; Messling, Heather M; Haggerty-Skeans, James R; Bhamidipati, Sai Krishna; Clawson, Elizabeth D; Overman, Christian A; Thatcher, Madison M; Salzer, James L; Samanta, Jayshree
Enhancing repair of myelin is an important therapeutic goal in many neurological disorders characterized by demyelination. In the healthy adult brain, ventral neural stem cells (vNSCs) in the subventricular zone, marked by GLI1 expression, do not generate oligodendrocytes. However, in response to demyelination, their progeny are recruited to lesions where they differentiate into oligodendrocytes and ablation of GLI1 further enhances remyelination. GLI1 and GLI2 are closely related transcriptional activators but the role of GLI2 in remyelination by vNSCs is not clear. Here, we show that genetic ablation of Gli1 in vNSCs increases GLI2 expression and combined loss of both transcription factors decreases the recruitment and differentiation of their progeny in demyelinated lesions. These results indicate that GLI1 and GLI2 have distinct, non-redundant functions in vNSCs and their relative levels play an essential role in the response to demyelination.
PMID: 33125874
ISSN: 2213-6711
CID: 4646942

Accumulation of Neurofascin at nodes of Ranvier is regulated by a Paranodal Switch

Zhang, Yanqing; Yuen, Stephanie; Peles, Elior; Salzer, James L
The paranodal junctions flank mature nodes of Ranvier and provide a barrier between ion channels at the nodes and juxtaparanodes. These junctions also promote node assembly and maintenance by mechanisms that are poorly understood. Here, we examine their role in the accumulation of NF186, a key adhesion molecule of PNS and CNS nodes. We previously showed NF186 is initially targeted/accumulates via its ectodomain to forming PNS (hemi)nodes by diffusion trapping whereas it is later targeted to mature nodes by a transport-dependent mechanism mediated by its cytoplasmic segment. To address the role of the paranodes in this switch, we compared accumulation of NF186 ectodomain and cytoplasmic domain constructs in wild type vs. paranode defective, i.e. Caspr-null mice. Both pathways are affected in the paranodal mutants. In the PNS of Caspr-null mice, diffusion trapping mediated by the NF186 ectodomain aberrantly persists into adulthood whereas the cytoplasmic domain/transport-dependent targeting is impaired. In contrast, accumulation of NF186 at CNS nodes does not undergo a switch - it is predominantly targeted to both forming and mature CNS nodes via its cytoplasmic domain and requires intact paranodes. FRAP analysis indicates the paranodes provide a membrane diffusion barrier that normally precludes diffusion of NF186 to nodes. Linkage of paranodal proteins to the underlying cytoskeleton likely contributes to this diffusion barrier based on 4.1B and βII spectrin expression in Caspr-null mice. Together, these results implicate the paranodes as membrane diffusion barriers that regulate targeting to nodes and highlight differences in the assembly of PNS and CNS nodes.SIGNIFICANCE STATEMENTNodes of Ranvier are essential for effective saltatory conduction along myelinated axons. A major question is how the various axonal proteins that comprise the multimeric nodal complex accumulate at this site. Here we examine how targeting of NF186, a key nodal adhesion molecule, is regulated by the flanking paranodal junctions. We show the transition from diffusion-trapping to transport-dependent accumulation of NF186 requires the paranodal junctions. We also demonstrate that these junctions are a barrier to diffusion of axonal proteins into the node and highlight differences in PNS and CNS node assembly. These results provide new insights into the mechanism of node assembly and the pathophysiology of neurological disorders in which impaired paranodal function contributes to clinical disability.
PMID: 32554548
ISSN: 1529-2401
CID: 4485102

Control of Channel Clustering by Cleavage

Salzer, James L
Enrichment of sodium channels at nodes of Ranvier, a hallmark of myelinated axons, underlies effective saltatory conduction. In this issue of Neuron, Eshed-Eisenbach et al. (2020) demonstrate that proteolysis of gliomedin, which drives initial channel clustering, provides a novel mechanism to ensure fidelity of channel localization to nodes.
PMID: 32497505
ISSN: 1097-4199
CID: 4465992