Try a new search

Format these results:

Searched for:

person:samueh01

in-biosketch:yes

Total Results:

131


Skin Metabolite, Farnesyl Pyrophosphate, Regulates Epidermal Response to Inflammation, Oxidative Stress and Migration

Pastar, Irena; Stojadinovic, Olivera; Sawaya, Andrew P; Stone, Rivka C; Lindley, Linsey Evan; Ojeh, Nkemcho; Vukelic, Sasa; Samuels, Herbert H; Tomic-Canic, Marjana
Skin produces cholesterol and a wide array of sterols and non-sterol mevalonate metabolites, including isoprenoid derivative farnesyl pyrophosphate (FPP). To characterize FPP action in epidermis, we generated transcriptional profiles of primary human keratinocytes treated with zaragozic acid (ZGA), a squalene synthase inhibitor that blocks conversion of FPP to squalene resulting in endogenous accumulation of FPP. The elevated levels of intracellular FPP resulted in regulation of epidermal differentiation and adherens junction signaling, insulin growth factor (IGF) signaling, oxidative stress response and interferon (IFN) signaling. Immunosuppressive properties of FPP were evidenced by STAT-1 downregulation and prominent suppression of its nuclear translocation by IFNgamma. Furthermore, FPP profoundly downregulated genes involved in epidermal differentiation of keratinocytes in vitro and in human skin ex vivo. Elevated levels of FPP resulted in induction of cytoprotective transcriptional factor Nrf2 and its target genes. We have previously shown that FPP functions as ligand for the glucocorticoid receptor (GR), one of the major regulator of epidermal homeostasis. Comparative microarray analyses show significant but not complete overlap between FPP and glucocorticoid regulated genes, suggesting that FPP may have wider transcriptional impact. This was further supported by co-transfection and chromatin immunoprecipitation experiments where we show that upon binding to GR, FPP recruits ss-catenin and, unlike glucocorticoids, recruits co-repressor GRIP1 to suppress keratin 6 gene. These findings have many clinical implications related to epidermal lipid metabolism, response to glucocorticoid therapy as well as pleiotropic effects of cholesterol lowering therapeutics, statins
PMID: 26916741
ISSN: 1097-4652
CID: 1965532

Fas Activated Serine-Threonine Kinase Domains 2 (FASTKD2) mediates apoptosis of breast and prostate cancer cells through its novel FAST2 domain

Das, Sharmistha; Yeung, Kay T; Mahajan, Muktar A; Samuels, Herbert H
BACKGROUND: Expression of NRIF3 (Nuclear Receptor Interacting Factor-3) rapidly and selectively leads to apoptosis of breast cancer cells. This occurs through binding of NRIF3 or its 30 amino acid Death Domain-1 (DD1) region to the transcriptional repressor, DIF-1 (DD1 Interacting Factor-1). DIF-1 acts in a wide variety of breast cancer cells but not other cell types to repress the pro-apoptotic gene, FASTKD2. Expression of NRIF3 or DD1 inactivates the DIF-1 repressor leading to rapid derepression of FASTKD2, which initiates apoptosis within 5-8 h of expression. Although FASTKD2 is an inner mitochondrial membrane protein, it does not require mitochondrial localization to initiate apoptosis. METHODS: Androgen dependent LNCaP cells as well as two androgen independent LNCaP cell lines (LNCaP-AI and LNCaP-abl) were studied and LNCaP-AI cells were engineered to conditionally express DD1 or the inactive DD1-S28A with 4-hydroxytamoxifen. Apoptosis was assessed by TUNEL assay. FASTKD2 is related to 4 other proteins encoded in the human genome (FASTKD1, 3, 4, 5). All contain a poorly conserved putative bipartite kinase domain designated as FAST1_FAST2. We examined whether expression of any of the other FASTKD isoforms leads to apoptosis and sought to identify the region of FASTKD2 necessary to initiate the apoptotic pathway. RESULTS: Of the FASTKD1-5 isoforms only expression of FASTKD2 leads to apoptosis. Although, the NRIF3/DD1/DIF-1 pathway does not mediate apoptosis of a wide variety of non-breast cancer cell lines, because of certain similarities and gene signatures between breast and prostate cancer we explored whether the NRIF3/DD1/DIF-1/FASTKD2 pathway mediates apoptosis of prostate cancer cells. We found that the pathway leads to apoptosis in LNCaP cells, including the two androgen-independent LNCaP cell lines that are generally resistant to apoptosis. Lastly, we identified that FASTKD2-mediated apoptosis is initiated by the 81 amino acid FAST2 region. CONCLUSIONS: The NRIF3/DIF-1/FASTKD2 pathway acts as a "death switch" in breast and prostate cancer cells. Deciphering how this pathway is regulated and how FASTKD2 initiates the apoptotic response will allow for the development of therapeutic agents for the treatment of androgen-independent prostate cancer or Tamoxifen-unresponsive Estrogen Receptor negative tumors as well as metastatic breast or prostate cancer.
PMCID:4256816
PMID: 25409762
ISSN: 1471-2407
CID: 1369062

A novel cell lysis approach reveals that caspase-2 rapidly translocates from the nucleus to the cytoplasm in response to apoptotic stimuli

Tinnikov, Alexander A; Samuels, Herbert H
Unlike other caspases, caspase-2 appears to be a nuclear protein although immunocytochemical studies have suggested that it may also be localized to the cytosol and golgi. Where and how caspase-2 is activated in response to apoptotic signals is not clear. Earlier immunocytochemistry studies suggest that caspase-2 is activated in the nucleus and through cleavage of BID leads to increased mitochondrial permeability. More recent studies using bimolecular fluorescence complementation found that caspase-2 oligomerization that leads to activation only occurs in the cytoplasm. Thus, apoptotic signals may lead to activation of caspase-2 which may already reside in the cytoplasm or lead to release of nuclear caspase-2 to the extra-nuclear cytoplasmic compartment. It has not been possible to study release of nuclear caspase-2 to the cytoplasm by cell fractionation studies since cell lysis is known to release nuclear caspase-2 to the extra-nuclear fraction. This is similar to what is known about unliganded nuclear estrogen receptor-alpha (ERalpha ) when cells are disrupted. In this study we found that pre-treatment of cells with N-ethylmaleimide (NEM), which alkylates cysteine thiol groups in proteins, completely prevents redistribution of caspase-2 and ERalpha from the nucleus to the extra-nuclear fraction when cells are lysed. Using this approach we provide evidence that apoptotic signals rapidly leads to a shift of caspase-2 from the nucleus to the extra-nuclear fraction, which precedes the detection of apoptosis. These findings are consistent with a model where apoptotic signals lead to a rapid shift of caspase-2 from the nucleus to the cytoplasm where activation occurs.
PMCID:3626589
PMID: 23596516
ISSN: 1932-6203
CID: 301392

Microcephaly Gene Links Trithorax and REST/NRSF to Control Neural Stem Cell Proliferation and Differentiation

Yang, Yawei J; Baltus, Andrew E; Mathew, Rebecca S; Murphy, Elisabeth A; Evrony, Gilad D; Gonzalez, Dilenny M; Wang, Estee P; Marshall-Walker, Christine A; Barry, Brenda J; Murn, Jernej; Tatarakis, Antonis; Mahajan, Muktar A; Samuels, Herbert H; Shi, Yang; Golden, Jeffrey A; Mahajnah, Muhammad; Shenhav, Ruthie; Walsh, Christopher A
Microcephaly is a neurodevelopmental disorder causing significantly reduced cerebral cortex size. Many known microcephaly gene products localize to centrosomes, regulating cell fate and proliferation. Here, we identify and characterize a nuclear zinc finger protein, ZNF335/NIF-1, as a causative gene for severe microcephaly, small somatic size, and neonatal death. Znf335 null mice are embryonically lethal, and conditional knockout leads to severely reduced cortical size. RNA-interference and postmortem human studies show that ZNF335 is essential for neural progenitor self-renewal, neurogenesis, and neuronal differentiation. ZNF335 is a component of a vertebrate-specific, trithorax H3K4-methylation complex, directly regulating REST/NRSF, a master regulator of neural gene expression and cell fate, as well as other essential neural-specific genes. Our results reveal ZNF335 as an essential link between H3K4 complexes and REST/NRSF and provide the first direct genetic evidence that this pathway regulates human neurogenesis and neuronal differentiation.
PMCID:3567437
PMID: 23178126
ISSN: 0092-8674
CID: 197612

A Novel Transcription Complex That Selectively Modulates Apoptosis of Breast Cancer Cells through Regulation of FASTKD2

Yeung, Kay T; Das, Sharmistha; Zhang, Jin; Lomniczi, Alejandro; Ojeda, Sergio R; Xu, Chong-Feng; Neubert, Thomas A; Samuels, Herbert H
We previously reported that expression of NRIF3 (nuclear receptor interacting factor-3) rapidly and selectively leads to apoptosis of breast cancer cells. DIF-1 (also known as interferon regulatory factor-2 binding protein 2 [IRF-2BP2]), the cellular target of NRIF3, was identified as a transcriptional repressor, and DIF-1 knockdown leads to apoptosis of breast cancer cells but not other cell types. Here, we identify IRF-2BP1 and EAP1 (enhanced at puberty 1) as important components of the DIF-1 complex mediating both complex stability and transcriptional repression. This interaction of DIF-1, IRF-2BP1, and EAP1 occurs through the conserved C4 zinc fingers of these proteins. Microarray studies were carried out in breast cancer cell lines engineered to conditionally and rapidly increase the levels of the death domain (DD1) region of NRIF3. The DIF-1 complex was found to repress FASTKD2, a putative proapoptotic gene, in breast cancer cells and to bind to the FASTKD2 gene by chromatin immunoprecipitation. FASTKD2 knockdown prevents apoptosis of breast cancer cells from NRIF3 expression or DIF-1 knockdown, while expression of FASTKD2 leads to apoptosis of both breast and nonbreast cancer cells. Thus, regulation of FASTKD2 by NRIF3 and the DIF-1 complex acts as a novel death switch that selectively modulates apoptosis in breast cancer
PMCID:3133243
PMID: 21444724
ISSN: 1098-5549
CID: 132312

Nuclear receptor engineering based on novel structure activity relationships revealed by farnesyl pyrophosphate

Goyanka, Ritu; Das, Sharmistha; Samuels, Herbert H; Cardozo, Timothy
Nuclear receptors (NRs) comprise the second largest protein family targeted by currently available drugs, acting via specific ligand interactions within the ligand binding domain (LBD). Recently, farnesyl pyrophosphate (FPP) was shown to be a unique promiscuous NR ligand, activating a subset of NR family members and inhibiting wound healing in skin. The current study aimed at visualizing the unique basis of FPP interaction with multiple receptors in order to identify general structure-activity relationships that operate across the NR family. Docking of FPP to the 3D structures of the LBDs of a diverse set of NRs consistently revealed an electrostatic FPP pyrophosphate contact with an NR arginine conserved in the NR family, a hydrophobic farnesyl contact with NR helix-12 and a ligand binding pocket volume between 300 and 430 A(3) as the minimal requirements for FPP activation of any NR. Lack of any of these structural features appears to render a given NR resistant to FPP activation. We used these structure-activity relationships to rationally design and successfully engineer several mutant human estrogen receptors that retain responsiveness to estradiol but no longer respond to FPP
PMCID:2953956
PMID: 20817759
ISSN: 1741-0134
CID: 113803

Farnesyl pyrophosphate inhibits epithelialization and wound healing through the glucocorticoid receptor

Vukelic, Sasa; Stojadinovic, Olivera; Pastar, Irena; Vouthounis, Constantinos; Krzyzanowska, Agata; Das, Sharmistha; Samuels, Herbert H; Tomic-Canic, Marjana
Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing
PMCID:2804356
PMID: 19903814
ISSN: 1083-351x
CID: 114360

Statins, inhibitors of cholesterol synthesis, accelerate wound healing via farnesyl pyrophosphate [Meeting Abstract]

Vukelic, S; Stojadinovic, O; Pastar, I; Das, S; Samuels, H; Krzyzanowska, A; Brem, H; Tomic-Canic, M
ISI:000264994000305
ISSN: 0022-202x
CID: 97875

Identification and characterization of a novel nuclear protein complex Involved In nuclear hormone receptor-mediated gene regulation

Garapaty, Shivani; Xu, Chong-Feng; Trojer, Patrick; Mahajan, Muktar A; Neubert, Thomas A; Samuels, Herbert H
NRC/NCoA6 plays an important role in mediating the effects of ligand-bound nuclear hormone receptors as well as other transcription factors. NRC interacting factor 1 (NIF-1) was cloned as a novel factor that interacts in vivo with NRC. Although NIF-1 does not directly interact with nuclear hormone receptors, it enhances activation by nuclear hormone receptors presumably through its interaction with NRC. To further understand the cellular and biological function of NIF-1, we identified NIF-1 associated proteins by in-solution proteolysis followed by mass spectrometry. The identified components revealed factors involved in histone methylation and cell cycle control and include Ash2L, RbBP5, WDR5, HCF-1, DBC-1, and EMSY. Although the NIF-1 complex contains Ash2L, RbBP5, and WDR5 suggesting that the complex might methylate histone H3-Lys4, we found that the complex contains a H3 methyltransferase activity that modifies a residue other than H3-Lys 4. The identified components form at least two distinct sized NIF-1 complexes. DBC-1 and EMSY were identified as integral components of a ~1.5 MDa NIF-1 complex and were found to play an important role in the regulation of nuclear receptor-mediated transcription. Stimulation of the Sox9 and HoxA1 genes by retinoic acid receptor-a was found to require both DBC-1 and EMSY in addition to NIF-1 for maximal transcriptional activation. Interestingly, NRC was not identified as a component of the NIF-1 complex, suggesting that NIF-1 and NRC do not exist as stable in vitro purified complexes although the separate NIF-1 and NRC complexes appear to functionally interact in the cell
PMCID:2658049
PMID: 19131338
ISSN: 0021-9258
CID: 95312

INHIBITORS OF CHOLESTEROL SYNTHESIS, STATINS, ACCELERATE WOUND HEALING [Meeting Abstract]

Vukelic, S; Stojadinovic, O; Pastar, I; Das, S; Samuels, H; Krzyzanowska, A; Ragupathi, M; Brem, H; Tomic-Canic, M
ISI:000264188600061
ISSN: 1067-1927
CID: 97662