Try a new search

Format these results:

Searched for:

person:songs05

in-biosketch:yes

Total Results:

13


Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings

Weiner, Sydney P; Vasquez, Carolina; Song, Soomin; Zhao, Kaiyang; Ali, Omar; Rosenkilde, Danielle; Froemke, Robert C; Carr, Kenneth D
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
PMCID:10843874
PMID: 38323217
ISSN: 2772-3925
CID: 5632652

Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines

Licht-Murava, Avital; Meadows, Samantha M; Palaguachi, Fernando; Song, Soomin C; Jackvony, Stephanie; Bram, Yaron; Zhou, Constance; Schwartz, Robert E; Froemke, Robert C; Orr, Adam L; Orr, Anna G
Transactivating response region DNA binding protein 43 (TDP-43) pathology is prevalent in dementia, but the cell type-specific effects of TDP-43 pathology are not clear, and therapeutic strategies to alleviate TDP-43-linked cognitive decline are lacking. We found that patients with Alzheimer's disease or frontotemporal dementia have aberrant TDP-43 accumulation in hippocampal astrocytes. In mouse models, induction of widespread or hippocampus-targeted accumulation in astrocytic TDP-43 caused progressive memory loss and localized changes in antiviral gene expression. These changes were cell-autonomous and correlated with impaired astrocytic defense against infectious viruses. Among the changes, astrocytes had elevated levels of interferon-inducible chemokines, and neurons had elevated levels of the corresponding chemokine receptor CXCR3 in presynaptic terminals. CXCR3 stimulation altered presynaptic function and promoted neuronal hyperexcitability, akin to the effects of astrocytic TDP-43 dysregulation, and blockade of CXCR3 reduced this activity. Ablation of CXCR3 also prevented TDP-43-linked memory loss. Thus, astrocytic TDP-43 dysfunction contributes to cognitive impairment through aberrant chemokine-mediated astrocytic-neuronal interactions.
PMCID:10115456
PMID: 37075107
ISSN: 2375-2548
CID: 5464472

Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala

Opendak, Maya; Raineki, Charlis; Perry, Rosemarie E; Rincón-Cortés, Millie; Song, Soomin C; Zanca, Roseanna M; Wood, Emma; Packard, Katherine; Hu, Shannon; Woo, Joyce; Martinez, Krissian; Vinod, K Yaragudri; Brown, Russell W; Deehan, Gerald A; Froemke, Robert C; Serrano, Peter A; Wilson, Donald A; Sullivan, Regina M
Social interaction deficits seen in psychiatric disorders emerge in early-life and are most closely linked to aberrant neural circuit function. Due to technical limitations, we have limited understanding of how typical versus pathological social behavior circuits develop. Using a suite of invasive procedures in awake, behaving infant rats, including optogenetics, microdialysis, and microinfusions, we dissected the circuits controlling the gradual increase in social behavior deficits following two complementary procedures-naturalistic harsh maternal care and repeated shock alone or with an anesthetized mother. Whether the mother was the source of the adversity (naturalistic Scarcity-Adversity) or merely present during the adversity (repeated shock with mom), both conditions elevated basolateral amygdala (BLA) dopamine, which was necessary and sufficient in initiating social behavior pathology. This did not occur when pups experienced adversity alone. These data highlight the unique impact of social adversity as causal in producing mesolimbic dopamine circuit dysfunction and aberrant social behavior.
PMID: 34706218
ISSN: 1097-4199
CID: 5033412

Dementia-linked TDP-43 dysregulation in astrocytes impairs memory, antiviral signaling, and chemokine-mediated astrocytic-neuronal interactions

Murava, Avital Licht; Meadows, Samantha; Palaguachi, Fernando; Song, Soomin C; Bram, Yaron; Zhou, Constance; Schwartz, Robert E; Froemke, Robert C; Orr, Adam L; Orr, Anna G
BACKGROUND:TDP-43 pathology is linked to cognitive deficits in diverse neurodegenerative disorders, including frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). The effects of TDP-43 pathology in different cell types, including astrocytes, are not clear. METHOD/METHODS:In this study, we used postmortem human brain samples, extensive behavioral testing in numerous cohorts of doubly transgenic mice, gene profiling in different isolated brain regions and cells, glial-neuronal co-culture assays and physiology, and biochemical assays to identify specific signaling cascades linked to TDP-43. RESULT/RESULTS:Our results show that astrocytic TDP-43 is mislocalized in postmortem human hippocampal tissue from AD cases. To assess the effects of widespread or hippocampus specific dysregulation of astrocytic TDP-43 in complementary systems, we generated three novel astrocyte specific mouse models of TDP-43 dysfunction. Consistently, these mouse models indicated that astrocytic TDP-43 dysfunction causes progressive hippocampus-dependent memory loss, but not motor deficits. Manipulation of astrocytic TDP-43 also increased hippocampal levels of interferon -inducible chemokines CXCL9 and CXCL10, and altered cell-autonomous antiviral signaling and defense against viral pathogens. Moreover, expression of CXCR3, the shared receptor for CXCL9 and CXCL10, was increased selectively in hippocampal presynaptic terminals. Acute or chronic stimulation of presynaptic CXCR3 modulated neuronal activities and presynaptic vesicles. CONCLUSION/CONCLUSIONS:Overall, our findings shed new light on TDP-43 dysregulation in astrocytes and its potential contributions to disease-related impairments in cognitive and immune-related functions. We report a novel chemokine-mediated astrocytic-neuronal pathway that is likely downstream of aberrant antiviral immune signaling in astrocytes that affects presynaptic release and neuronal activities. Together, these results implicate astrocytic TDP-43 dysregulation in the pathogenesis of dementia and point to chemokine signaling and CXCR3 as potential therapeutic targets for alleviating cognitive decline.
PMID: 34971156
ISSN: 1552-5279
CID: 5108322

Innate and plastic mechanisms for maternal behaviour in auditory cortex

Schiavo, Jennifer K; Valtcheva, Silvana; Bair-Marshall, Chloe J; Song, Soomin C; Martin, Kathleen A; Froemke, Robert C
Infant cries evoke powerful responses in parents1-4. Whether parental animals are intrinsically sensitive to neonatal vocalizations, or instead learn about vocal cues for parenting responses is unclear. In mice, pup-naive virgin females do not recognize the meaning of pup distress calls, but retrieve isolated pups to the nest after having been co-housed with a mother and litter5-9. Distress calls are variable, and require co-caring virgin mice to generalize across calls for reliable retrieval10,11. Here we show that the onset of maternal behaviour in mice results from interactions between intrinsic mechanisms and experience-dependent plasticity in the auditory cortex. In maternal females, calls with inter-syllable intervals (ISIs) from 75 to 375 milliseconds elicited pup retrieval, and cortical responses were generalized across these ISIs. By contrast, naive virgins were neuronally and behaviourally sensitized to the most common ('prototypical') ISIs. Inhibitory and excitatory neural responses were initially mismatched in the cortex of naive mice, with untuned inhibition and overly narrow excitation. During co-housing experiments, excitatory responses broadened to represent a wider range of ISIs, whereas inhibitory tuning sharpened to form a perceptual boundary. We presented synthetic calls during co-housing and observed that neurobehavioural responses adjusted to match these statistics, a process that required cortical activity and the hypothalamic oxytocin system. Neuroplastic mechanisms therefore build on an intrinsic sensitivity in the mouse auditory cortex, and enable rapid plasticity for reliable parenting behaviour.
PMID: 33029014
ISSN: 1476-4687
CID: 4651762

Publisher Correction: Innate and plastic mechanisms for maternal behaviour in auditory cortex

Schiavo, Jennifer K; Valtcheva, Silvana; Bair-Marshall, Chloe J; Song, Soomin C; Martin, Kathleen A; Froemke, Robert C
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
PMID: 33154579
ISSN: 1476-4687
CID: 4684162

Posterior amygdala regulates sexual and aggressive behaviors in male mice

Yamaguchi, Takashi; Wei, Dongyu; Song, Soomin C; Lim, Byungkook; Tritsch, Nicolas X; Lin, Dayu
Sexual and aggressive behaviors are fundamental to animal survival and reproduction. The medial preoptic nucleus (MPN) and ventrolateral part of the ventromedial hypothalamus (VMHvl) are essential regions for male sexual and aggressive behaviors, respectively. While key inhibitory inputs to the VMHvl and MPN have been identified, the extrahypothalamic excitatory inputs essential for social behaviors remain elusive. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the posterior amygdala (PA) as a main source of excitatory inputs to the hypothalamus and key mediators for mating and fighting in male mice. We find two largely distinct PA subpopulations that differ in connectivity, gene expression, in vivo responses and social behavior relevance. MPN-projecting PAEsr1+ cells are activated during mating and are necessary and sufficient for male sexual behaviors, while VMHvl-projecting PAEsr1+ cells are excited during intermale aggression and promote attacks. These findings place the PA as a key node in both male aggression and reproduction circuits.
PMID: 32719562
ISSN: 1546-1726
CID: 4540192

Broadband Entrainment of Striatal Low-Threshold Spike Interneurons

Morales, Juan C; Higgs, Matthew H; Song, Soomin C; Wilson, Charles J
Striatal interneurons and spiny projection (SP) neurons are differentially tuned to spectral components of their input. Previous studies showed that spike responses of somatostatin/NPY-expressing low threshold spike (LTS) interneurons have broad frequency tuning, setting these cells apart from other striatal GABAergic interneurons and SP neurons. We investigated the mechanism of LTS interneuron spiking resonance and its relationship to non-spiking membrane impedance resonance, finding that abolition of impedance resonance did not alter spiking resonance. Because LTS interneurons are pacemakers whose rhythmic firing is perturbed by synaptic input, we tested the hypothesis that their spiking resonance arises from their phase resetting properties. Phase resetting curves (PRCs) were measured in LTS interneurons and SP neurons and used to make phase-oscillator models of both cell types. The models reproduced the broad tuning of LTS interneurons, and the differences from SP neurons. The spectral components of the PRC predicted each cell's sensitivity to corresponding input frequencies. LTS interneuron PRCs contain larger high-frequency components than SP neuron PRCs, providing enhanced responses to input frequencies above the cells' average firing rates. Thus, LTS cells can be entrained by input oscillations to which SP neurons are less responsive. These findings suggest that feedforward inhibition by LTS interneurons may regulate SP neurons' entrainment by oscillatory afferents.
PMCID:7326000
PMID: 32655378
ISSN: 1662-5110
CID: 5033402

A Hypothalamic Midbrain Pathway Essential for Driving Maternal Behaviors

Fang, Yi-Ya; Yamaguchi, Takashi; Song, Soomin C; Tritsch, Nicolas X; Lin, Dayu
Maternal behaviors are essential for the survival of the young. Previous studies implicated the medial preoptic area (MPOA) as an important region for maternal behaviors, but details of the maternal circuit remain incompletely understood. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the MPOA as key mediators of pup approach and retrieval. Reversible inactivation of MPOAEsr1+cells impairs those behaviors, whereas optogenetic activation induces immediate pup retrieval. In vivo recordings demonstrate preferential activation of MPOAEsr1+cells during maternal behaviors and changes in MPOA cell responses across reproductive states. Furthermore, channelrhodopsin-assisted circuit mapping reveals a strong inhibitory projection from MPOAEsr1+cells to ventral tegmental area (VTA) non-dopaminergic cells. Pathway-specific manipulations reveal that this projection is essential for driving pup approach and retrieval and that VTA dopaminergic cells are reliably activated during those behaviors. Altogether, this study provides new insight into the neural circuit that generates maternal behaviors.
PMCID:5890946
PMID: 29621487
ISSN: 1097-4199
CID: 3025802

The ionic mechanism of membrane potential oscillations and membrane resonance in striatal LTS interneurons

Song, S C; Beatty, J A; Wilson, C J
Striatal low-threshold spiking (LTS) interneurons spontaneously transition to a depolarized, oscillating state similar to that seen after sodium channels are blocked. In the depolarized state, whether spontaneous or induced by sodium channel blockade, the neurons express a 3- to 7-Hz oscillation and membrane impedance resonance in the same frequency range. The membrane potential oscillation and membrane resonance are expressed in the same voltage range (greater than -40 mV). We identified and recorded from LTS interneurons in striatal slices from a mouse that expressed green fluorescent protein under the control of the neuropeptide Y promoter. The membrane potential oscillation depended on voltage-gated calcium channels. Antagonism of L-type calcium currents (CaV1) reduced the amplitude of the oscillation, whereas blockade of N-type calcium currents (CaV2.2) reduced the frequency. Both calcium sources activate a calcium-activated chloride current (CaCC), the blockade of which abolished the oscillation. The blocking of any of these three channels abolished the membrane resonance. Immunohistochemical staining indicated anoctamin 2 (ANO2), and not ANO1, as the CaCC source. Biophysical modeling showed that CaV1, CaV2.2, and ANO2 are sufficient to generate a membrane potential oscillation and membrane resonance, similar to that in LTS interneurons. LTS interneurons exhibit a membrane potential oscillation and membrane resonance that are both generated by CaV1 and CaV2.2 activating ANO2. They can spontaneously enter a state in which the membrane potential oscillation dominates the physiological properties of the neuron.
PMCID:5144687
PMID: 27440246
ISSN: 1522-1598
CID: 5035282