Try a new search

Format these results:

Searched for:

person:sugimm01

in-biosketch:yes

Total Results:

192


Neuromuscular transmission and muscle fatigue changes by nanostructured oxygen

Ivannikov, Maxim V; Sugimori, Mutsuyuki; Llinas, Rodolfo R
INTRODUCTION: Oxygen (O2 ) nanobubbles offer a new method for tissue oxygenation. The effects of O2 nanobubbles on transmission at neuromuscular junctions (NMJs) and muscle function were explored in murine diaphragm. METHODS: Electrophysiological parameters, NMJ ultrastructure, muscle force, and muscle fatigue were studied during superfusion with solutions with different oxygen levels or oxygen nanobubbles. RESULTS: High frequency nerve stimulation of muscles superfused with O2 nanobubble solution slowed neurotransmission decline over those with either control or hyperoxic solution. O2 nanobubble solution increased the amplitude of evoked excitatory junction potentials and quantal content but did not affect spontaneous activity. Electron microscopy of stimulated O2 nanobubble treated NMJs showed accumulation of large synaptic vesicles and endosome-like structures. O2 nanobubble solution had no effects on isometric muscle force, but it significantly decreased fatigability and maximum force recovery time in nerve stimulated muscles. CONCLUSIONS: O2 nanobubbles increase neurotransmission and reduce the probability of neurotransmission failure in muscle fatigue
PMID: 27422738
ISSN: 1097-4598
CID: 2180312

Tau Pathology Mediated Presynaptic Dysfunction

Moreno, H; Morfini, G; Buitrago, L; Ujlaki, G; Choi, S; Yu, E; Moreira, J E; Avila, J; Brady, S T; Pant, H; Sugimori, M; Llinas, R R
Brain tauopathies are characterized by abnormal processing of tau protein. While somatodendritic tau mislocalization has attracted considerable attention in tauopathies, the role of tau pathology in axonal transport, connectivity and related dysfunctions remains obscure. We have previously shown using the squid giant synapse that presynaptic microinjection of recombinant human tau protein (htau42) results in failure of synaptic transmission. Here, we evaluated molecular mechanisms mediating this effect. Thus, the initial event, observed after htau42 presynaptic injection, was an increase in transmitter release. This event was mediated by calcium release from intracellular stores and was followed by a reduction in evoked transmitter release. The effect of htau42 on synaptic transmission was recapitulated by a peptide comprising the phosphatase-activating domain of tau, suggesting activation of phosphotransferases. Accordingly, findings indicated that htau42-mediated toxicity involves the activities of both GSK3 and Cdk5 kinases.
PMCID:4887082
PMID: 27012611
ISSN: 1873-7544
CID: 2052192

RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinas, Rodolfo R
We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis.
PMCID:4393147
PMID: 25742953
ISSN: 2051-817x
CID: 1480822

Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline

Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D; Moreno, Herman; Moreira, Jorge E; Sugimori, Mutsuyuki; Llinas, Rodolfo R
Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa(++) amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5-10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement.
PMCID:3921564
PMID: 24575037
ISSN: 1663-3563
CID: 820782

Synaptic vesicle exocytosis in hippocampal synaptosomes correlates directly with total mitochondrial volume

Ivannikov, Maxim V; Sugimori, Mutsuyuki; Llinas, Rodolfo R
Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and, specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity.
PMCID:3488359
PMID: 22772899
ISSN: 0895-8696
CID: 210992

Probing the functional properties of mammalian dendrites. 1980 [Historical Article]

Llinas, Rodolfo; Sugimori, Mutsuyuki
PMID: 23035258
ISSN: 1473-4222
CID: 955422

Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity

Chouhan, Amit K; Ivannikov, Maxim V; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R; Macleod, Gregory T
Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pH(m)), inner membrane potential (Deltapsi(m)), and NAD(P)H levels ([NAD(P)H](m)) increase within seconds of nerve stimulation. The elevations of pH(m), Deltapsi(m), and [NAD(P)H](m) indicate an increased capacity for ATP production. Elevations in pH(m) were blocked by manipulations that blocked mitochondrial Ca(2+) uptake, including replacement of extracellular Ca(2+) with Sr(2+) and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca(2+) that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca(2+) levels ([Ca(2+)](c)) between MNs when each fires at its endogenous rate. The average [Ca(2+)](c) level (329 +/- 11 nm) was slightly above the average Ca(2+) affinity of the mitochondria (281 +/- 13 nm). In summary, we show that when MNs fire at endogenous rates, [Ca(2+)](c) is driven into a range where mitochondria rapidly acquire Ca(2+). As we also show that Ca(2+) stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca(2+)](c) levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs
PMCID:3531998
PMID: 22279208
ISSN: 1529-2401
CID: 150578

Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA

Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E; Sugimori, Mutsuyuki; Llinas, Rodolfo R
Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity
PMCID:3099362
PMID: 21629767
ISSN: 1663-3563
CID: 145695

Calcium clearance and its energy requirements in cerebellar neurons

Ivannikov, Maxim V; Sugimori, Mutsuyuki; Llinas, Rodolfo R
Quick cytosolic calcium clearance is essential for the effective modulation of various cellular functions. An excess of cytosolic calcium after influx is largely removed via ATP-dependent mechanisms located in the plasma membrane and the endoplasmic reticulum. Therefore, calcium clearance depends critically on the adequate supply of ATP, which may come from either glycolysis or mitochondria, or both. However, it presently remains unknown the degree to which individual ATP generating pathways - glycolysis and mitochondria power ATP-dependent calcium as well as other vital ion clearance mechanisms in neurons. In this study, we explored the relationship between the energy generating pathways and ion clearance mechanisms in neurons by characterizing the effects of glycolytic and mitochondrial inhibitors of ATP synthesis on calcium clearance kinetics in the soma, dendrites and spines. Stimulation of cultured cerebellar granule cells by brief pulses of 60mM potassium ACSF, and electrical stimulation of purkinje cells in acutely prepared slices led to a transient calcium influx, whose clearance was largely mediated by the plasma membrane Ca(2+)-ATPase pump. Inhibition of glycolysis by deoxyglucose or iodoacetic acid resulted in a marked slowing in calcium clearance in the soma, dendrites, and spines with the spines affected the most. However, inhibition of the mitochondrial citric acid cycle with fluoroacetate and arsenite, or mitochondrial ATP synthase with oligomycin did not produce any immediate effects on calcium clearance kinetics in any of those neuronal regions. Although cytosolic calcium clearance was not affected by the inhibition of mitochondria, the magnitude of the calcium clearance delay induced by glycolytic inhibitors in different neuronal compartments was related to their mitochondrial density. Conversely, the endoplasmic reticulum Ca(2+)-ATPase pump activity is fuelled by both glycolytic and mitochondrial ATP, as evidenced by a minimal change in the endoplasmic reticulum calcium contents in cells treated with either deoxyglucose supplemented with lactate or arsenite. Taken together, these data suggest that calcium clearance in cerebellar granule and purkinje cells relies on the plasma membrane Ca(2+)-ATPase, and is powered by glycolysis
PMCID:2900537
PMID: 20510449
ISSN: 1532-1991
CID: 110869

Synaptic transmission block by presynaptic injection of oligomeric amyloid beta

Moreno, Herman; Yu, Eunah; Pigino, Gustavo; Hernandez, Alejandro I; Kim, Natalia; Moreira, Jorge E; Sugimori, Mutsuyuki; Llinas, Rodolfo R
Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Abeta42, but not oAbeta40 or extracellular oAbeta42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAbeta42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD
PMCID:2659170
PMID: 19304802
ISSN: 0027-8424
CID: 105316