Try a new search

Format these results:

Searched for:

person:tewarn01

in-biosketch:true

Total Results:

2


Use of gelatin puzzle phantoms to teach medical students isolated ultrasound transducer movements and fundamental concepts

Maloney, Lauren M; Seidman, Peggy A; Zach, Kristen M; Tewari, Neera K; Tito, Matthew F; Page, Christopher R
BACKGROUND:Psychomotor skills related to the use of medical ultrasound are a fundamental, but often overlooked component of this ubiquitous medical imaging technology. Although discussions of image production/orientation, sonographic planes, and imaging/scanning techniques are common in existing literature, these discussions rarely address practical skills related to these basic concepts. The cognitive load of transducer movements and machine operation, in conjunction with learning the ultrasound representation of anatomy, may overwhelm a novice learner. Our goal was to develop and evaluate a set of ultrasound puzzle phantoms for students to use as they learn isolated, specific transducer movements and sonographic concepts. We intentionally created phantoms that contain objects that are likely familiar to students to reduce the cognitive load associated with simultaneously learning the ultrasound interpretation of anatomy. METHODS:This preliminary evaluation of our novel, homemade, gelatin ultrasound puzzle phantoms was performed using pretests and posttests obtained by scanning an assessment phantom, and student questionnaires. Two phases of training and testing occurred with feedback from Phase 1 allowing for refinement of the puzzles and techniques for testing. Skills taught and evaluated included probe rotation, depth assessment, sliding, and tilting. RESULTS:Twenty-eight students attended the Phase 1 training session with positive trends in students' abilities to use rotation, sliding, and tilting to answer questions, while only depth showed statistically significant improvements (p = 0.021). Overall students agreed the experience a productive use of time (86%), was beneficial (93%), and would recommend to others (93%). Fifteen (54%) students returned 3 months later. There was no significant decay in skills obtained from the prior training session. In Phase 2, 134 medical students participated, and 76 (57%) completed an online questionnaire. A majority of students agreed they had a better understanding of rotation (83%), depth (80%), sliding (88%) and tilting (55%). Similar to Phase 1, many students (75%) felt the experience was beneficial. CONCLUSIONS:This preliminary study gave us insight into student opinions, as well as information to guide future scalability and development of additional ultrasound puzzle phantoms to aid in medical student education of isolated transducer movements and sonographic concepts prior to imaging human anatomy.
PMCID:6988293
PMID: 31996188
ISSN: 1472-6920
CID: 4599272

Integration of a Low-Cost Introductory Ultrasound Curriculum Into Existing Procedural Skills Education for Preclinical Medical Students

Maloney, Lauren; Zach, Kristen; Page, Christopher; Tewari, Neera; Tito, Matthew; Seidman, Peggy
We evaluated integration of an introductory ultrasound curriculum into our existing mandatory procedural skills program for preclinical medical students. Phantoms consisting of olives, pimento olives, and grapes embedded in opaque gelatin were developed. Four classes encouraged progressive refinement of phantom-scanning and object identification skills. Students improved their ability to identify hidden objects, although each object type achieved a statistically significant improvement in correct identification at different time points. The total phantom cost per student was $0.76. Our results suggest that short repeated experiences scanning simple, low-cost ultrasound phantoms confer basic ultrasound skills.
PMID: 28026892
ISSN: 1550-9613
CID: 4599262