Try a new search

Format these results:

Searched for:

person:torroa01

in-biosketch:true

Total Results:

72


Three-Dimensional Printing Methods for Bioceramic-Based Scaffold Fabrication for Craniomaxillofacial Bone Tissue Engineering

Sheikh, Zeeshan; Nayak, Vasudev Vivekanand; Daood, Umer; Kaur, Anupreet; Moussa, Hanan; Canteenwala, Abbas; Michaud, Pierre-Luc; de Fátima Balderrama, Ísis; de Oliveira Sousa, Edisa; Tovar, Nick; Torroni, Andrea; Glogauer, Michael; Talib, Huzefa; Coelho, Paulo G; Witek, Lukasz
Three-dimensional printing (3DP) technology has revolutionized the field of the use of bioceramics for maxillofacial and periodontal applications, offering unprecedented control over the shape, size, and structure of bioceramic implants. In addition, bioceramics have become attractive materials for these applications due to their biocompatibility, biostability, and favorable mechanical properties. However, despite their advantages, bioceramic implants are still associated with inferior biological performance issues after implantation, such as slow osseointegration, inadequate tissue response, and an increased risk of implant failure. To address these challenges, researchers have been developing strategies to improve the biological performance of 3D-printed bioceramic implants. The purpose of this review is to provide an overview of 3DP techniques and strategies for bioceramic materials designed for bone regeneration. The review also addresses the use and incorporation of active biomolecules in 3D-printed bioceramic constructs to stimulate bone regeneration. By controlling the surface roughness and chemical composition of the implant, the construct can be tailored to promote osseointegration and reduce the risk of adverse tissue reactions. Additionally, growth factors, such as bone morphogenic proteins (rhBMP-2) and pharmacologic agent (dipyridamole), can be incorporated to promote the growth of new bone tissue. Incorporating porosity into bioceramic constructs can improve bone tissue formation and the overall biological response of the implant. As such, employing surface modification, combining with other materials, and incorporating the 3DP workflow can lead to better patient healing outcomes.
PMCID:10970952
PMID: 38535253
ISSN: 2079-4983
CID: 5644882

Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair

Slavin, Blaire V.; Nayak, Vasudev V.; Boczar, Daniel; Bergamo, Edmara T.P.; Slavin, Benjamin R.; Yarholar, Lauren M.; Torroni, Andrea; Coelho, Paulo G.; Witek, Lukasz
Computer-aided design/computer-aided manufacturing and 3-dimensional (3D) printing techniques have revolutionized the approach to bone tissue engineering for the repair of craniomaxillofacial skeletal defects. Ample research has been performed to gain a fundamental understanding of the optimal 3D-printed scaffold design and composition to facilitate appropriate bone formation and healing. Benchtop and preclinical, small animal model testing of 3D-printed bioactive ceramic scaffolds augmented with pharmacological/biological agents have yielded promising results given their potential combined osteogenic and osteoinductive capacity. However, other factors must be evaluated before newly developed constructs may be considered analogous alternatives to the "gold standard" autologous graft for defect repair. More specifically, the 3D-printed bioactive ceramic scaffold's long-term safety profile, biocompatibility, and resorption kinetics must be studied. The ultimate goal is to successfully regenerate bone that is comparable in volume, density, histologic composition, and mechanical strength to that of native bone. In vivo studies of these newly developed bone tissue engineering in translational animal models continue to make strides toward addressing regulatory and clinically relevant topics. These include the use of skeletally immature animal models to address the challenges posed by craniomaxillofacial defect repair in pediatric patients. This manuscript reviews the most recent preclinical animal studies seeking to assess 3D-printed ceramic scaffolds for improved repair of critical-sized craniofacial bony defects.
SCOPUS:85181516357
ISSN: 1049-2275
CID: 5630232

Direct inkjet writing type 1 bovine collagen/β-tricalcium phosphate scaffolds for bone regeneration

Cabrera Pereira, Angel; Tovar, Nick; Nayak, Vasudev Vivekanand; Mijares, Dindo Q; Smay, James E; Torroni, Andrea; Flores, Roberto L; Witek, Lukasz
Bone tissue has the capacity to regenerate under healthy conditions, but complex cases like critically sized defects hinder natural bone regeneration, necessitating surgery, and use of a grafting material for rehabilitation. The field of bone tissue engineering (BTE) has pioneered ways to address such issues utilizing different biomaterials to create a platform for cell migration and tissue formation, leading to improved bone reconstruction. One such approach involves 3D-printed patient-specific scaffolds designed to aid in regeneration of boney defects. This study aimed to develop and characterize 3D printed scaffolds composed of type I collagen augmented with β-tricalcium phosphate (COL/β-TCP). A custom-built direct inkjet write (DIW) printer was used to fabricate β-TCP, COL, and COL/β-TCP scaffolds using synthesized colloidal gels. After chemical crosslinking, the scaffolds were lyophilized and subjected to several characterization techniques, including light microscopy, scanning electron microscopy, and x-ray diffraction to evaluate morphological and chemical properties. In vitro evaluation was performed using human osteoprogenitor cells to assess cytotoxicity and proliferative capacity of the different scaffold types. Characterization results confirmed the presence of β-TCP in the 3D printed COL/β-TCP scaffolds, which exhibited crystals that were attributed to β-TCP due to the presence of calcium and phosphorus, detected through energy dispersive x-ray spectroscopy. In vitro studies showed that the COL/β-TCP scaffolds yielded more favorable results in terms of cell viability and proliferation compared to β-TCP and COL scaffolds. The novel COL/β-TCP scaffold constructs hold promise for improving BTE applications and may offer a superior environment for bone regeneration compared with conventional COL and β-TCP scaffolds.
PMID: 38247237
ISSN: 1552-4981
CID: 5624542

Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair

Slavin, Blaire V; Nayak, Vasudev V; Boczar, Daniel; Bergamo, Edmara Tp; Slavin, Benjamin R; Yarholar, Lauren M; Torroni, Andrea; Coelho, Paulo G; Witek, Lukasz
Computer-aided design/computer-aided manufacturing and 3-dimensional (3D) printing techniques have revolutionized the approach to bone tissue engineering for the repair of craniomaxillofacial skeletal defects. Ample research has been performed to gain a fundamental understanding of the optimal 3D-printed scaffold design and composition to facilitate appropriate bone formation and healing. Benchtop and preclinical, small animal model testing of 3D-printed bioactive ceramic scaffolds augmented with pharmacological/biological agents have yielded promising results given their potential combined osteogenic and osteoinductive capacity. However, other factors must be evaluated before newly developed constructs may be considered analogous alternatives to the "gold standard" autologous graft for defect repair. More specifically, the 3D-printed bioactive ceramic scaffold's long-term safety profile, biocompatibility, and resorption kinetics must be studied. The ultimate goal is to successfully regenerate bone that is comparable in volume, density, histologic composition, and mechanical strength to that of native bone. In vivo studies of these newly developed bone tissue engineering in translational animal models continue to make strides toward addressing regulatory and clinically relevant topics. These include the use of skeletally immature animal models to address the challenges posed by craniomaxillofacial defect repair in pediatric patients. This manuscript reviews the most recent preclinical animal studies seeking to assess 3D-printed ceramic scaffolds for improved repair of critical-sized craniofacial bony defects.
PMID: 37622526
ISSN: 1536-3732
CID: 5598722

Osteogenic differentiation and reconstruction of mandible defects using a novel resorbable membrane: An in vitro and in vivo experimental study

Bergamo, Edmara T P; Balderrama, Ísis de Fátima; Ferreira, Marcel Rodrigues; Spielman, Robert; Slavin, Blaire V; Torroni, Andrea; Tovar, Nick; Nayak, Vasudev V; Slavin, Benjamin R; Coelho, Paulo G; Witek, Lukasz
To evaluate the cellular response of both an intact fish skin membrane and a porcine-derived collagen membrane and investigate the bone healing response of these membranes using a translational, preclinical, guided-bone regeneration (GBR) canine model. Two different naturally sourced membranes were evaluated in this study: (i) an intact fish skin membrane (Kerecis Oral®, Kerecis) and (ii) a porcine derived collagen (Mucograft®, Geistlich) membrane, positive control. For the in vitro experiments, human osteoprogenitor (hOP) cells were used to assess the cellular viability and proliferation at 24, 48, 72, and 168 h. ALPL, COL1A1, BMP2, and RUNX2 expression levels were analyzed by real-time PCR at 7 and 14 days. The preclinical component was designed to mimic a GBR model in canines (n = 12). The first step was the extraction of premolars (P1-P4) and the 1st molars bilaterally, thereby creating four three-wall box type defects per mandible (two per side). Each defect site was filled with bone grafting material, which was then covered with one of the two membranes (Kerecis Oral® or Mucograft®). The groups were nested within the mandibles of each subject and membranes randomly allocated among the defects to minimize potential site bias. Samples were harvested at 30-, 60-, and 90-days and subjected to computerized microtomography (μCT) for three-dimensional reconstruction to quantify bone formation and graft degradation, in addition to histological processing to qualitatively analyze bone regeneration. Neither the intact fish skin membrane nor porcine-based collagen membrane presented cytotoxic effects. An increase in cell proliferation rate was observed for both membranes, with the Kerecis Oral® outperforming the Mucograft® at the 48- and 168-hour time points. Kerecis Oral® yielded higher ALPL expression relative to Mucograft® at both 7- and 14-day points. Additionally, higher COL1A1 expression was observed for the Kerecis Oral® membrane after 7 days but no differences were detected at 14 days. The membranes yielded similar BMP2 and RUNX2 expression at 7 and 14 days. Volumetric reconstructions and histologic micrographs indicated gradual bone ingrowth along with the presence of particulate bone grafts bridging the defect walls for both Kerecis Oral® and Mucograft® membranes, which allowed for the reestablishment of the mandible shape after 90 days. New bone formation significantly increased from 30 to 60 days, and from 60 to 90 days in vivo, without significant differences between membranes. The amount of bovine grafting material (%) within the defects significantly decreased from 30 to 90 days. Collagen membranes led to an upregulation of cellular proliferation and adhesion along with increased expression of genes associated with bone healing, particularly the intact fish skin membrane. Despite an increase in the bone formation rate in the defect over time, there was no significant difference between the membranes.
PMID: 37470190
ISSN: 1552-4981
CID: 5535932

Remodeling of the Temporomandibular Joint After Mandibular Setback Surgery: A 3D Cephalometric Analysis

Naik, Keyur Y; Lee, Kevin C; Rekawek, Peter; Zoida, Joseph; Torroni, Andrea
BACKGROUND:Condylar adaptations following orthognathic surgery remain an area of interest. Prior studies do not use 3-dimensional imaging modalities and lack standardization in the choice of osteotomy and movement when assessing condylar changes. PURPOSE:The purpose of this study was to use 3-dimensional cephalometry to measure the association between osteotomy type (sagittal split osteotomy [SSO] vs vertical ramus osteotomy [VRO]) and changes in condylar volume and position. STUDY DESIGN, SETTING, AND SAMPLE:This is a retrospective cohort study from January 2021 through December 2022 of patients at Bellevue Hospital in New York City, New York who were treated with either SSO or VRO for the correction of Class III skeletal malocclusion. PREDICTOR/EXPOSURE/INDEPENDENT VARIABLE:The primary predictor was the type of mandibular osteotomy, sagittal split osteotomy, and vertical ramus osteotomy. MAIN OUTCOME VARIABLES:) and relative position (anterior-posterior change utilizing the Pullinger and Hollinder method). COVARIATES:Covariates included patient age, sex, setback magnitude, temporomandibular joint symptoms, and fixation method for SSO patients. ANALYSES:tests. If there were multiple significant univariate predictors, multiple regression models were created to predict volume and position changes. A P < .05 value was considered statistically significant. RESULTS:; P = .03) and positional change (68.2 vs 12.5%; P < .01). Self-reported measures of postoperative pain, internal derangement, and myofascial symptoms were not significantly associated with either volume or positional changes. CONCLUSIONS AND RELEVANCE:The SSO resulted in greater postoperative condylar volume loss and positional changes. These volume and positional changes were not correlated with self-reported temporomandibular disorder symptoms.
PMID: 37640238
ISSN: 1531-5053
CID: 5613862

Bone healing around implants placed in subjects with metabolically compromised systemic conditions

Bergamo, Edmara T P; Witek, Lukasz; Ramalho, Ilana; Lopes, Adolfo C O; Nayak, Vasudev Vivekanand; Bonfante, Estevam A; Tovar, Nick; Torroni, Andrea; Coelho, Paulo G
The aim of this study was to evaluate the bone healing of tight-fit implants placed in the maxilla and mandible of subjects compromised with metabolic syndrome (MS) and type-2 Diabetes Mellitus (T2DM). Eighteen Göttingen minipigs were randomly distributed into three groups: (i) control (normal diet), (ii) MS (cafeteria diet for obesity induction), (iii) T2DM (cafeteria diet for obesity induction + Streptozotocin for T2DM induction). Maxillary and mandibular premolars and molar were extracted. After 8 weeks of healing, implants with progressive small buttress threads were placed, and allowed to integrate for 6 weeks after which the implant/bone blocks were retrieved for histological processing. Qualitative and quantitative histomorphometric analyses (percentage of bone-to-implant contact, %BIC, and bone area fraction occupancy within implant threads, %BAFO) were performed. The bone healing process around the implant occurred predominantly through interfacial remodeling with subsequent bone apposition. Data as a function of systemic condition yielded significantly higher %BIC and %BAFO values for healthy and MS relative to T2DM. Data as a function of maxilla and mandible did not yield significant differences for either %BIC and %BAFO. When considering both factors, healthy and MS subjects had %BIC and %BAFO trend towards higher values in the mandible relative to maxilla, whereas T2DM yielded higher %BIC and %BAFO in the maxilla relative to mandible. All systemic conditions presented comparable levels of %BIC and %BAFO in the maxilla; healthy and MS presented significantly higher %BIC and %BAFO relative to T2DM in the mandible. T2DM presented lower amounts of bone formation around implants relative to MS and healthy. Implants placed in the maxilla and in the mandible showed comparable amounts of bone in proximity to implants.
PMID: 37184298
ISSN: 1552-4981
CID: 5495732

3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications-Physicochemical Characterization and In Vitro Evaluation

Nayak, Vasudev Vivekanand; Tovar, Nick; Khan, Doha; Pereira, Angel Cabrera; Mijares, Dindo Q; Weck, Marcus; Durand, Alejandro; Smay, James E; Torroni, Andrea; Coelho, Paulo G; Witek, Lukasz
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds' ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.
PMCID:10454336
PMID: 37623094
ISSN: 2310-2861
CID: 5598742

"Bone Tissue Engineering in the Growing Calvaria: A 3D Printed Bioceramic Scaffold to Reconstruct Critical-Sized Defects in a Skeletally Immature Pig Model"

DeMitchell-Rodriguez, Evellyn M; Shen, Chen; Nayak, Vasudev V; Tovar, Nick; Witek, Lukasz; Torroni, Andrea; Yarholar, Lauren M; Cronstein, Bruce N; Flores, Roberto L; Coelho, Paulo G
BACKGROUND:3D-printed bioceramic scaffolds composed of 100% beta(β)-tricalcium phosphate augmented with dipyridamole (3DPBC-DIPY) can regenerate bone across critically sized defects in skeletally mature and immature animal models. Prior to human application, safe and effective bone formation should be demonstrated in a large translational animal model. This study evaluated the ability of 3DPBC-DIPY scaffolds to restore critically sized calvarial defects in a skeletally immature, growing minipig. METHODS:Unilateral calvarial defects (~1.4cm) were created in six-week-old Göttingen minipigs (n=12). Four defects were filled with a 1000µ M 3DPBC-DIPY scaffold with a cap (a solid barrier on the ectocortical side of the scaffold to prevent soft tissue infiltration), four defects were filled with a 1000µM 3DPBC-DIPY scaffold without a cap, and four defects served as negative controls (no scaffold). Animals were euthanized 12-weeks post-operatively. Calvaria were subjected to micro-computed tomography, 3D-reconstruction with volumetric analysis, qualitative histologic analysis, and nanoindentation. RESULTS:Scaffold-induced bone growth was statistically greater than negative controls (p≤0.001) and the scaffolds with caps produced significantly more bone generation compared to the scaffolds without caps (p≤0.001). Histological analysis revealed woven and lamellar bone with the presence of haversian canals throughout the regenerated bone. Additionally, cranial sutures were observed to be patent and there was no evidence of ectopic bone formation or excess inflammatory response. Reduced elastic modulus (Er) and hardness (H) of scaffold-regenerated bone were found to be statistically equivalent to native bone (p = 0.148 for Er of scaffolds with and without caps, and p = 0.228 and p = 0.902, for H of scaffolds with and without caps, respectively). CONCLUSION/CONCLUSIONS:3DPBC-DIPY scaffolds have the capacity to regenerate bone across critically sized calvarial defects in a skeletally immature translational pig model.
PMID: 36723712
ISSN: 1529-4242
CID: 5420092

Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration

Nayak, Vasudev Vivekanand; Slavin, Blaire V; Bergamo, Edmara T P; Torroni, Andrea; Runyan, Christopher M; Flores, Roberto L; Kasper, F Kurtis; Young, Simon; Coelho, Paulo G; Witek, Lukasz
Defects characterized as large osseous voids in bone, in certain circumstances, are difficult to treat, requiring extensive treatments which lead to an increased financial burden, pain, and prolonged hospital stays. Grafts exist to aid in bone tissue regeneration (BTR), among which ceramic-based grafts have become increasingly popular due to their biocompatibility and resorbability. BTR using bioceramic materials such as β-tricalcium phosphate has seen tremendous progress and has been extensively used in the fabrication of biomimetic scaffolds through the three-dimensional printing (3DP) workflow. 3DP has hence revolutionized BTR by offering unparalleled potential for the creation of complex, patient, and anatomic location-specific structures. More importantly, it has enabled the production of biomimetic scaffolds with porous structures that mimic the natural extracellular matrix while allowing for cell growth-a critical factor in determining the overall success of the BTR modality. While the concept of 3DP bioceramic bone tissue scaffolds for human applications is nascent, numerous studies have highlighted its potential in restoring both form and function of critically sized defects in a wide variety of translational models. In this review, we summarize these recent advancements and present a review of the engineering principles and methodologies that are vital for using 3DP technology for craniomaxillofacial reconstructive applications. Moreover, we highlight future advances in the field of dynamic 3D printed constructs via shape-memory effect, and comment on pharmacological manipulation and bioactive molecules required to treat a wider range of boney defects.
PMID: 37463403
ISSN: 1937-3392
CID: 5535642