Try a new search

Format these results:

Searched for:

person:turnbd01

Total Results:

141


Cell specificity of Manganese-enhanced MRI signal in the cerebellum

Rallapalli, Harikrishna; Bayin, N Sumru; Goldman, Hannah; Maric, Dragan; Nieman, Brian J; Koretsky, Alan P; Joyner, Alexandra L; Turnbull, Daniel H
Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes. In such images, MEMRI hyperintensity is uniform in thickness throughout the anterior-posterior axis of sagittal sections and is centrally located in the cerebellar cortex. These signal features suggested that the Purkinje cell layer, which houses the cell bodies of the Purkinje cells and the Bergmann glia, is the source of hyperintensity. Despite this circumstantial evidence, the cellular source of MRI contrast has been difficult to define. In this study, we quantified the effects of selective ablation of Purkinje cells or Bergmann glia on cerebellar MEMRI signal to determine whether signal could be assigned to one cell type. We found that the Purkinje cells, not the Bergmann glia, are the primary of source of the enhancement in the Purkinje cell layer. This cell-ablation strategy should be useful for determining the cell specificity of other MRI contrast mechanisms.
PMCID:10330770
PMID: 37245561
ISSN: 1095-9572
CID: 5536622

Towards reliable reconstruction of the mouse brain corticothalamic connectivity using diffusion MRI

Arefin, Tanzil Mahmud; Lee, Choong Heon; Liang, Zifei; Rallapalli, Harikrishna; Wadghiri, Youssef Z; Turnbull, Daniel H; Zhang, Jiangyang
Diffusion magnetic resonance imaging (dMRI) tractography has yielded intriguing insights into brain circuits and their relationship to behavior in response to gene mutations or neurological diseases across a number of species. Still, existing tractography approaches suffer from limited sensitivity and specificity, leading to uncertain interpretation of the reconstructed connections. Hence, in this study, we aimed to optimize the imaging and computational pipeline to achieve the best possible spatial overlaps between the tractography and tracer-based axonal projection maps within the mouse brain corticothalamic network. We developed a dMRI-based atlas of the mouse forebrain with structural labels imported from the Allen Mouse Brain Atlas (AMBA). Using the atlas and dMRI tractography, we first reconstructed detailed node-to-node mouse brain corticothalamic structural connectivity matrices using different imaging and tractography parameters. We then investigated the effects of each condition for accurate reconstruction of the corticothalamic projections by quantifying the similarities between the tractography and the tracer data from the Allen Mouse Brain Connectivity Atlas (AMBCA). Our results suggest that these parameters significantly affect tractography outcomes and our atlas can be used to investigate macroscopic structural connectivity in the mouse brain. Furthermore, tractography in mouse brain gray matter still face challenges and need improved imaging and tractography methods.
PMCID:10149621
PMID: 37060936
ISSN: 1095-9572
CID: 5464322

Longitudinal in Utero Analysis of Engrailed-1 Knockout Mouse Embryonic Phenotypes Using High-Frequency Ultrasound

Aristizábal, Orlando; Qiu, Ziming; Gallego, Estefania; Aristizábal, Matias; Mamou, Jonathan; Wang, Yao; Ketterling, Jeffrey A; Turnbull, Daniel H
Large-scale international efforts to generate and analyze loss-of-function mutations in each of the approximately 20,000 protein-encoding gene mutations are ongoing using the "knockout" mouse as a model organism. Because one-third of gene knockouts are expected to result in embryonic lethality, it is important to develop non-invasive in utero imaging methods to detect and monitor mutant phenotypes in mouse embryos. We describe the utility of 3-D high-frequency (40-MHz) ultrasound (HFU) for longitudinal in utero imaging of mouse embryos between embryonic days (E) 11.5 and E14.5, which represent critical stages of brain and organ development. Engrailed-1 knockout (En1-ko) mouse embryos and their normal control littermates were imaged with HFU in 3-D, enabling visualization of morphological phenotypes in the developing brains, limbs and heads of the En1-ko embryos. Recently developed deep learning approaches were used to automatically segment the embryonic brain ventricles and bodies from the 3-D HFU images, allowing quantitative volumetric analyses of the En1-ko brain phenotypes. Taken together, these results show great promise for the application of longitudinal 3-D HFU to analyze knockout mouse embryos in utero.
PMID: 36283941
ISSN: 1879-291x
CID: 5359402

A Deep Learning Approach for Segmentation, Classification and Visualization of 3D High Frequency Ultrasound Images of Mouse Embryos

Qiu, Ziming; Xu, Tongda; Langerman, Jack; Das, William; Wang, Chuiyu; Nair, Nitin; Aristizabal, Orlando; Mamou, Jonathan; Turnbull, Daniel H; Ketterling, Jeffrey A; Wang, Yao
Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This paper proposes an accurate, efficient and explainable deep learning pipeline for automatic segmentation and classification of the BV and body. For segmentation, a two-stage framework is implemented. The first stage produces a low-resolution segmentation map, which is then used to crop a region of interest (ROI) around the target object and serve as the probability map of the auto-context input for the second-stage fine-resolution refinement network. The segmentation then becomes tractable on high-resolution 3D images without time-consuming sliding windows. The proposed segmentation method significantly reduces inference time (102.36 to 0.09 s/volume≈1000x faster) while maintaining high accuracy comparable to previous sliding-window approaches. Based on the BV and body segmentation map, a volumetric convolutional neural network (CNN) is trained to perform a mutant classification task. Through backpropagating the gradients of the predictions to the input BV and body segmentation map, the trained classifier is found to largely focus on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest itself. This suggests that gradient backpropagation of deep learning classifiers may provide a powerful tool for automatically detecting unknown phenotypes associated with a known genetic mutation.
PMID: 33755564
ISSN: 1525-8955
CID: 4822582

CSF1R inhibition depletes tumor-associated macrophages and attenuates tumor progression in a mouse sonic Hedgehog-Medulloblastoma model

Tan, I-Li; Arifa, Raquel Duque Nascimento; Rallapalli, Harikrishna; Kana, Veronika; Lao, Zhimin; Sanghrajka, Reeti Mayur; Sumru Bayin, N; Tanne, Antoine; Wojcinski, Alexandre; Korshunov, Andrey; Bhardwaj, Nina; Merad, Miriam; Turnbull, Daniel H; Lafaille, Juan J; Joyner, Alexandra L
The immune microenvironment of tumors can play a critical role in promoting or inhibiting tumor progression depending on the context. We present evidence that tumor-associated macrophages/microglia (TAMs) can promote tumor progression in the sonic hedgehog subgroup of medulloblastoma (SHH-MB). By combining longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) and immune profiling of a sporadic mouse model of SHH-MB, we found the density of TAMs is higher in the ~50% of tumors that progress to lethal disease. Furthermore, reducing regulatory T cells or eliminating B and T cells in Rag1 mutants does not alter SHH-MB tumor progression. As TAMs are a dominant immune component in tumors and are normally dependent on colony-stimulating factor 1 receptor (CSF1R), we treated mice with a CSF1R inhibitor, PLX5622. Significantly, PLX5622 reduces a subset of TAMs, prolongs mouse survival, and reduces the volume of most tumors within 4 weeks of treatment. Moreover, concomitant with a reduction in TAMs the percentage of infiltrating cytotoxic T cells is increased, indicating a change in the tumor environment. Our studies in an immunocompetent preclinical mouse model demonstrate TAMs can have a functional role in promoting SHH-MB progression. Thus, CSF1R inhibition could have therapeutic potential for a subset of SHH-MB patients.
PMID: 33159168
ISSN: 1476-5594
CID: 4664582

Scanner independent deep learning-based segmentation framework applied to mouse embryos

Chapter by: Aristizabal, Orlando; Turnbull, Daniel H.; Ketterling, Jeffrey A.; Wang, Yao; Qiu, Ziming; Xu, Tongda; Goldman, Hannah; Mamou, Jonathan
in: IEEE International Ultrasonics Symposium, IUS by
[S.l.] : IEEE Computer Society, 2020
pp. ?-?
ISBN: 9781728154480
CID: 4733912

Longitudinal MEMRI analysis of brain phenotypes in a mouse model of Niemann-Pick Type C disease

Rallapalli, Harikrishna; Darwin, Benjamin C; Toro-Montoya, Estefania; Lerch, Jason P; Turnbull, Daniel H
Niemann-Pick Type C (NPC) is a rare genetic disorder characterized by progressive cell death in various tissues, particularly in the cerebellar Purkinje cells, with no known cure. Mouse models for human NPC have been generated and characterized histologically, behaviorally, and using longitudinal magnetic resonance imaging (MRI). Previous imaging studies revealed significant brain volume differences between mutant and wild-type animals, but stopped short of making volumetric comparisons of the cerebellar sub-regions. In this study, we present longitudinal manganese-enhanced MRI (MEMRI) data from cohorts of wild-type, heterozygote carrier, and homozygote mutant NPC mice, as well as deformation-based morphometry (DBM) driven brain volume comparisons across genotypes, including the cerebellar cortex, white matter, and nuclei. We also present the first comparisons of MEMRI signal intensities, reflecting brain and cerebellum sub-regional Mn2+-uptake over time and across genotypes.
PMID: 32417449
ISSN: 1095-9572
CID: 4443622

DEEP MOUSE: AN END-TO-END AUTO-CONTEXT REFINEMENT FRAMEWORK FOR BRAIN VENTRICLE & BODY SEGMENTATION IN EMBRYONIC MICE ULTRASOUND VOLUMES

Xu, Tongda; Qiu, Ziming; Das, William; Wang, Chuiyu; Langerman, Jack; Nair, Nitin; Aristizábal, Orlando; Mamou, Jonathan; Turnbull, Daniel H; Ketterling, Jeffrey A; Wang, Yao
The segmentation of the brain ventricle (BV) and body in embryonic mice high-frequency ultrasound (HFU) volumes can provide useful information for biological researchers. However, manual segmentation of the BV and body requires substantial time and expertise. This work proposes a novel deep learning based end-to-end auto-context refinement framework, consisting of two stages. The first stage produces a low resolution segmentation of the BV and body simultaneously. The resulting probability map for each object (BV or body) is then used to crop a region of interest (ROI) around the target object in both the original image and the probability map to provide context to the refinement segmentation network. Joint training of the two stages provides significant improvement in Dice Similarity Coefficient (DSC) over using only the first stage (0.818 to 0.906 for the BV, and 0.919 to 0.934 for the body). The proposed method significantly reduces the inference time (102.36 to 0.09 s/volume ≈1000x faster) while slightly improves the segmentation accuracy over the previous methods using slide-window approaches.
PMCID:7768981
PMID: 33381278
ISSN: 1945-7928
CID: 4731902

MEMRI-based imaging pipeline for guiding preclinical studies in mouse models of sporadic medulloblastoma

Rallapalli, Harikrishna; Tan, I-Li; Volkova, Eugenia; Wojcinski, Alexandre; Darwin, Benjamin C; Lerch, Jason P; Joyner, Alexandra L; Turnbull, Daniel H
PURPOSE/OBJECTIVE:Genetically engineered mouse models of sporadic cancers are critical for studying tumor biology and for preclinical testing of therapeutics. We present an MRI-based pipeline designed to produce high resolution, quantitative information about tumor progression and response to novel therapies in mouse models of medulloblastoma (MB). METHODS:Sporadic MB was modeled in mice by inducing expression of an activated form of the Smoothened gene (aSmo) in a small number of cerebellar granule cell precursors. aSmo mice were imaged and analyzed at defined time-points using a 3D manganese-enhanced MRI-based pipeline optimized for high-throughput. RESULTS:A semi-automated segmentation protocol was established that estimates tumor volume in a time-frame compatible with a high-throughput pipeline. Both an empirical, volume-based classifier and a linear discriminant analysis-based classifier were tested to distinguish progressing from nonprogressing lesions at early stages of tumorigenesis. Tumor centroids measured at early stages revealed that there is a very specific location of the probable origin of the aSmo MB tumors. The efficacy of the manganese-enhanced MRI pipeline was demonstrated with a small-scale experimental drug trial designed to reduce the number of tumor associated macrophages and microglia. CONCLUSION/CONCLUSIONS:Our results revealed a high level of heterogeneity between tumors within and between aSmo MB models, indicating that meaningful studies of sporadic tumor progression and response to therapy could not be conducted without an imaging-based pipeline approach.
PMID: 31403226
ISSN: 1522-2594
CID: 4041832

Somatic mutations of chromatin regulator KMT2D in cerebellar precursors influences shhmedulloblastoma tumorigenesis [Meeting Abstract]

Sanghrajka, R; Tan, I -L; Wojcinski, A; Rallapalli, H; Turnbull, D; Ge, K; Joyner, A
Medulloblastoma (MB), the most common malignant pediatric brain tumor, is a classic example of dysregulation of developmental pathways leading to tumorogenesis. Despite advancements in multi-modal therapies, most patients suffer from long-term neurocognitive and neuroendocrine disabilities. The Sonic Hedgehog subgroup of MB (SHH-MB) accounts for ~30% of all cases and originates from ATOH1+ cerebellar granule cell precursors (GCPs). Experimental data in mice has shown that activating mutations in the SHH pathway induce tumors only in rare GCPs, suggesting that additional mutations and epigenetic changes are required to influence tumor progression. The KMT2D gene, encoding the histone-lysine N-methyltransferase 2D, is amongst the ten most frequently mutated genes in MB, with somatic mutations seen in ~15% of all SHH-MB patients. We developed sporadic mouse models of SHH-MB with a low penetrance to enable studies of secondary mutations (Tan, PNAS, 2018). Immunofluorescence staining for KMT2D on early-stage SHH-MB lesions, mid-stage and late-stage tumors revealed that a subset of lesions/tumors (16/98) do not express KMT2D and are negative for H3K4me3. Interestingly, P53 and KMT2D expression showed a positive correlation in ~94% of tumors/lesions and NeuN and KMT2D showed a positive correlation in ~92% of tumors/lesions. In order to determine the roles for KMT2D in GCP proliferation and differentiation, and uncover whether and how KMT2D promotes SHH-MB tumorigenesis, we are using genetic mouse-models whereby Kmt2d is heterozygously or homozygously deleted alone, or in conjunction with activation of the SHH pathway. Mice with SHH-MB tumors expressing SmoM2 and a loss of Kmt2d develop aggressive tumors at high penetrance, with metastatic leptomeningeal spread in the brain stem and spinal cord. Thus, loss of Kmt2d increases SHH-MB tumor progression and leads to malignancy. Ongoing studies are determining how the chromatin landscape and gene expression are changed when Kmt2d is deleted in GCPs
EMBASE:631168324
ISSN: 1523-5866
CID: 4388182