Try a new search

Format these results:

Searched for:

name:armache

school:SOM

Total Results:

26


Systematic Fe(II)-EDTA Method of Dose-Dependent Hydroxyl Radical Generation for Protein Oxidative Footprinting

Chapman, Jessica R; Paukner, Max; Leser, Micheal; Teng, Kai Wen; Koide, Shohei; Holder, Marlene; Armache, Karim-Jean; Becker, Chris; Ueberheide, Beatrix; Brenowitz, Michael
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
PMID: 38049117
ISSN: 1520-6882
CID: 5595392

Giant variations in giant virus genome packaging

Talbert, Paul B; Henikoff, Steven; Armache, Karim-Jean
Giant viruses (Nucleocytoviricota) have a largely conserved lifecycle, yet how they cram their large genomes into viral capsids is mostly unknown. The major capsid protein and the packaging ATPase (pATPase) comprise a highly conserved morphogenesis module in giant viruses, yet some giant viruses dispense with an icosahedral capsid, and others encode multiple versions of pATPases, including conjoined ATPase doublets, or encode none. Some giant viruses have acquired DNA-condensing proteins to compact their genomes, including sheath-like structures encasing folded DNA or densely packed viral nucleosomes that show a resemblance to eukaryotic nucleosomes at the telomeres. Here, we review what is known and unknown about these ATPases and condensing proteins, and place these variations in the context of viral lifecycles.
PMID: 37777391
ISSN: 0968-0004
CID: 5609472

Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1

Abini-Agbomson, Stephen; Gretarsson, Kristjan; Shih, Rochelle M; Hsieh, Laura; Lou, Tracy; De Ioannes, Pablo; Vasilyev, Nikita; Lee, Rachel; Wang, Miao; Simon, Matthew D; Armache, Jean-Paul; Nudler, Evgeny; Narlikar, Geeta; Liu, Shixin; Lu, Chao; Armache, Karim-Jean
SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.
PMID: 37595555
ISSN: 1097-4164
CID: 5598082

Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1

Thomas, Jonathan F; Valencia-Sánchez, Marco Igor; Tamburri, Simone; Gloor, Susan L; Rustichelli, Samantha; Godínez-López, Victoria; De Ioannes, Pablo; Lee, Rachel; Abini-Agbomson, Stephen; Gretarsson, Kristjan; Burg, Jonathan M; Hickman, Allison R; Sun, Lu; Gopinath, Saarang; Taylor, Hailey F; Sun, Zu-Wen; Ezell, Ryan J; Vaidya, Anup; Meiners, Matthew J; Cheek, Marcus A; Rice, William J; Svetlov, Vladimir; Nudler, Evgeny; Lu, Chao; Keogh, Michael-Christopher; Pasini, Diego; Armache, Karim-Jean
Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.
PMID: 37556531
ISSN: 2375-2548
CID: 5594932

Intrinsic mesoscale properties of a Polycomb protein underpin heterochromatin fidelity

Lee, Sujin; Abini-Agbomson, Stephen; Perry, Daniela S; Goodman, Allen; Rao, Beiduo; Huang, Manning Y; Diedrich, Jolene K; Moresco, James J; Yates, John R; Armache, Karim-Jean; Madhani, Hiten D
Little is understood about how the two major types of heterochromatin domains (HP1 and Polycomb) are kept separate. In the yeast Cryptococcus neoformans, the Polycomb-like protein Ccc1 prevents deposition of H3K27me3 at HP1 domains. Here we show that phase separation propensity underpins Ccc1 function. Mutations of the two basic clusters in the intrinsically disordered region or deletion of the coiled-coil dimerization domain alter phase separation behavior of Ccc1 in vitro and have commensurate effects on formation of Ccc1 condensates in vivo, which are enriched for PRC2. Notably, mutations that alter phase separation trigger ectopic H3K27me3 at HP1 domains. Supporting a direct condensate-driven mechanism for fidelity, Ccc1 droplets efficiently concentrate recombinant C. neoformans PRC2 in vitro whereas HP1 droplets do so only weakly. These studies establish a biochemical basis for chromatin regulation in which mesoscale biophysical properties play a key functional role.
PMID: 37217653
ISSN: 1545-9985
CID: 5535032

A giant virus genome is densely packaged by stable nucleosomes within virions

Bryson, Terri D; De Ioannes, Pablo; Valencia-Sánchez, Marco Igor; Henikoff, Jorja G; Talbert, Paul B; Lee, Rachel; La Scola, Bernard; Armache, Karim-Jean; Henikoff, Steven
The two doublet histones of Marseillevirus are distantly related to the four eukaryotic core histones and wrap 121 base pairs of DNA to form remarkably similar nucleosomes. By permeabilizing Marseillevirus virions and performing genome-wide nuclease digestion, chemical cleavage, and mass spectrometry assays, we find that the higher-order organization of Marseillevirus chromatin fundamentally differs from that of eukaryotes. Marseillevirus nucleosomes fully protect DNA within virions as closely abutted 121-bp DNA-wrapped cores without linker DNA or phasing along genes. Likewise, we observed that nucleosomes reconstituted onto multi-copy tandem repeats of a nucleosome-positioning sequence are tightly packed. Dense promiscuous packing of fully wrapped nucleosomes rather than "beads on a string" with genic punctuation represents a distinct mode of DNA packaging by histones. We suggest that doublet histones have evolved for viral genome protection and may resemble an early stage of histone differentiation leading to the eukaryotic octameric nucleosome.
PMID: 36370708
ISSN: 1097-4164
CID: 5357732

Viral histones: pickpocket's prize or primordial progenitor?

Talbert, Paul B; Armache, Karim-Jean; Henikoff, Steven
The common histones H2A, H2B, H3, and H4 are the characteristic components of eukaryotic nucleosomes, which function to wrap DNA and compact the genome as well as to regulate access to DNA for transcription and replication in all eukaryotes. In the past two decades, histones have also been found to be encoded in some DNA viruses, where their functions and properties are largely unknown, though recently histones from two related viruses have been shown to form nucleosome-like structures in vitro. Viral histones can be highly similar to eukaryotic histones in primary sequence, suggesting they have been recently picked up from eukaryotic hosts, or they can be radically divergent in primary sequence and may occur as conjoined histone doublets, triplets, or quadruplets, suggesting ancient origins prior to the divergence of modern eukaryotes. Here, we review what is known of viral histones and discuss their possible origins and functions. We consider how the viral life cycle may affect their properties and histories, and reflect on the possible roles of viruses in the origin of the nucleus of modern eukaryotic cells.
PMCID:9145170
PMID: 35624484
ISSN: 1756-8935
CID: 5277542

The structure of a virus-encoded nucleosome

Valencia-Sánchez, Marco Igor; Abini-Agbomson, Stephen; Wang, Miao; Lee, Rachel; Vasilyev, Nikita; Zhang, Jenny; De Ioannes, Pablo; La Scola, Bernard; Talbert, Paul; Henikoff, Steve; Nudler, Evgeny; Erives, Albert; Armache, Karim-Jean
Certain large DNA viruses, including those in the Marseilleviridae family, encode histones. Here we show that fused histone pairs Hβ-Hα and Hδ-Hγ from Marseillevirus are structurally analogous to the eukaryotic histone pairs H2B-H2A and H4-H3. These viral histones form 'forced' heterodimers, and a heterotetramer of four such heterodimers assembles DNA to form structures virtually identical to canonical eukaryotic nucleosomes.
PMID: 33927388
ISSN: 1545-9985
CID: 4853672

Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction

Grau, Daniel; Zhang, Yixiao; Lee, Chul-Hwan; Valencia-Sánchez, Marco; Zhang, Jenny; Wang, Miao; Holder, Marlene; Svetlov, Vladimir; Tan, Dongyan; Nudler, Evgeny; Reinberg, Danny; Walz, Thomas; Armache, Karim-Jean
Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin. Here, we present two cryo-EM structures of PRC2:EZH1, one as a monomer and a second one as a dimer bound to a nucleosome. When bound to nucleosome substrate, the PRC2:EZH1 dimer undergoes a dramatic conformational change. We demonstrate that mutation of a divergent EZH1/2 loop abrogates the nucleosome-binding and methyltransferase activities of PRC2:EZH1. Finally, we show that PRC2:EZH1 dimers are more effective than monomers at promoting chromatin compaction, and the divergent EZH1/2 loop is essential for this function, thereby tying together the methyltransferase, nucleosome-binding, and chromatin-compaction activities of PRC2:EZH1. We speculate that the conformational flexibility and the ability to dimerize enable PRC2 to act on the varied chromatin substrates it encounters in the cell.
PMID: 33514705
ISSN: 2041-1723
CID: 4767922

Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation

Valencia-Sánchez, Marco Igor; De Ioannes, Pablo; Wang, Miao; Truong, David M; Lee, Rachel; Armache, Jean-Paul; Boeke, Jef D; Armache, Karim-Jean
Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure. We provide a mechanism of this histone cross-talk and show that H4K16ac and H2BUb play crucial roles in H3K79 di- and trimethylation in vitro and in vivo. These data reveal mechanisms that control H3K79 methylation and demonstrate how H4K16ac, H3K79me, and H2BUb function together to regulate gene transcription and gene silencing to ensure optimal maintenance and propagation of an epigenetic state.
PMID: 33479126
ISSN: 1095-9203
CID: 4760952