Try a new search

Format these results:

Searched for:

person:cheslm01

Total Results:

74


Breaking Tradition to Bridge Bench and Bedside: Accelerating the MD-PhD-Residency Pathway

Modrek, Aram S; Tanese, Naoko; Placantonakis, Dimitris G; Sulman, Erik P; Rivera, Rafael; Du, Kevin L; Gerber, Naamit K; David, Gregory; Chesler, Mitchell; Philips, Mark R; Cangiarella, Joan
PROBLEM/OBJECTIVE:Physician-scientists are individuals trained in both clinical practice and scientific research. Often, the goal of physician-scientist training is to address pressing questions in biomedical research. The established pathways to formally train such individuals are, mainly, MD-PhD programs and physician-scientist track residencies. Although graduates of these pathways are well equipped to be physician-scientists, numerous factors, including funding and length of training, discourage application to such programs and impede success rates. APPROACH/METHODS:To address some of the pressing challenges in training and retaining burgeoning physician-scientists, New York University Grossman School of Medicine formed the Accelerated MD-PhD-Residency Pathway in 2016. This pathway builds on the previously established accelerated three-year MD pathway to residency at the same institution. The Accelerated MD-PhD-Residency Pathway conditionally accepts MD-PhD trainees to a residency position at the same institution through the National Resident Matching Program. OUTCOMES/RESULTS:Since its inception, 2 students have joined the Accelerated MD-PhD-Residency Pathway, which provides protected research time in their chosen residency. The pathway reduces the time to earn an MD and PhD by one year and reduces the MD training phase to three years, reducing the cost and lowering socioeconomic barriers. Remaining at the same institution for residency allows for the growth of strong research collaborations and mentoring opportunities, which foster success. NEXT STEPS/UNASSIGNED:The authors and institutional leaders plan to increase the number of trainees that are accepted into the Accelerated MD-PhD-Residency Pathway and track the success of these students through residency and into practice to determine if the pathway is meeting its goal of increasing the number of practicing physician-scientists. The authors hope this model can serve as an example to leaders at other institutions who may wish to adopt this pathway for the training of their MD-PhD students.
PMID: 33464738
ISSN: 1938-808x
CID: 4760452

Intracellular pH Measurements in Glioblastoma Cells Using the pH-Sensitive Dye BCECF

Galifianakis, Nataliya V; Placantonakis, Dimitris G; Chesler, Mitchell
The regulation of pH in glioblastoma (GBM) has received significant attention, because it has been linked to tumor metabolism and the stem cell phenotype. The variability in blood perfusion and oxygen tension within tumors suggests that ambient pH values fluctuate across different tumor territories. This chapter describes a detailed protocol for measuring intracellular pH in patient-derived GBM cells in vitro, using the fluorescent pH sensitive dye BCECF.
PMID: 29392694
ISSN: 1940-6029
CID: 2933542

Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells

Bayin, N Sumru; Frenster, Joshua D; Sen, Rajeev; Si, Sheng; Modrek, Aram S; Galifianakis, Nataliya; Dolgalev, Igor; Ortenzi, Valerio; Illa-Bochaca, Irineu; Khahera, Anadjeet; Serrano, Jonathan; Chiriboga, Luis; Zagzag, David; Golfinos, John G; Doyle, Werner; Tsirigos, Aristotelis; Heguy, Adriana; Chesler, Mitch; Barcellos-Hoff, Mary Helen; Snuderl, Matija; Placantonakis, Dimitris G
Glioblastoma (GBM) stem cells (GSCs) reside in both hypoxic and vascular microenvironments within tumors. The molecular mechanisms that allow GSCs to occupy such contrasting niches are not understood. We used patient-derived GBM cultures to identify GSC subtypes with differential activation of Notch signaling, which co-exist in tumors but occupy distinct niches and match their metabolism accordingly. Multipotent GSCs with Notch pathway activation reside in perivascular niches, and are unable to entrain anaerobic glycolysis during hypoxia. In contrast, most CD133-expressing GSCs do not depend on canonical Notch signaling, populate tumors regardless of local vascularity and selectively utilize anaerobic glycolysis to expand in hypoxia. Ectopic activation of Notch signaling in CD133-expressing GSCs is sufficient to suppress anaerobic glycolysis and resistance to hypoxia. These findings demonstrate a novel role for Notch signaling in regulating GSC metabolism and suggest intratumoral GSC heterogeneity ensures metabolic adaptations to support tumor growth in diverse tumor microenvironments.
PMCID:5630302
PMID: 29029402
ISSN: 1949-2553
CID: 2738172

Defining glioblastoma stem cell heterogeneity [Meeting Abstract]

Bayin, N S; Sen, R; Si, S; Modrek, A S; Ortenzi, V; Zagzag, D; Snuderl, M; Golfinos, J G; Doyle, W; Galifianakis, N; Chesler, M; Illa-Bochaca, I; Barcellos-Hoff, M H; Dolgalev, I; Heguy, A; Placantonakis, D
A major impeding factor in designing effective therapies against glioblastoma (GBM) is its extensive molecular heterogeneity and the diversity of microenvironmental conditions within any given tumor. To test whether heterogeneity with the GBM stem cell (GSC) population is required to ensure tumor growth in such diverse microenvironments, we used human GBM biospecimens to examine the identity of cells marked by two established GSC markers: CD133 and activation of the Notch pathway. Using primary GBM cultures engineered to express GFP upon activation of Notch signaling, we observed only partial overlap between cells expressing cell surface CD133 and cells with Notch activation (n = 3 specimens), contrary to expectations based on prior literature. To further investigate this finding, we FACS-isolated these cell populations and characterized them. While both CD133+ (CD133 + /Notch-) and Notch+(CD133-/Notch+) cells fulfill GSC criteria, they differ vastly in their transcriptome, metabolic preferences and differentiation capacity, thus giving rise to histologically distinct tumors. CD133+ GSCs have increased expression of hypoxia-regulated and glycolytic genes, and are able to expand under hypoxia by activating anaerobic glycolysis. In contrast, Notch+ GSCs are unable to utilize anaerobic glycolysis under hypoxia, leading to decreased tumorsphere formation ability. While CD133+ GSCs give rise to histologically homogeneous tumors devoid of large tumor vessels, tumors initiated by Notch+ GSCs are marked by large perfusing vessels enveloped by pericytes. Using a lineage tracing system, we showed that pericytes are derived from Notch+ GSCs. In addition, Notch+ cells are able to give rise to all tumor lineages in vitro and in vivo, including CD133 + /Notch- cells, as opposed to Notch- populations, which have restricted differentiation capacity and do not generate Notch+ lineages. Our findings demonstrate that GSC heterogeneity is a mechanism used by tumors to sustain growth in diverse microenvironmental conditions
EMBASE:72188944
ISSN: 1522-8517
CID: 2015952

Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands

Domigan, L J; Andersson, M; Alberti, K A; Chesler, M; Xu, Q; Johansson, J; Rising, A; Kaplan, D L
Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown. In this study, concentric ion selective microelectrodes were used to determine the luminal pH of Bombyx mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the Bombyx mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient. Bombyx mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk formation may lead to a more efficient production of artificial or regenerated silkworm silk fibers.
PMCID:4628561
PMID: 26365738
ISSN: 1879-0240
CID: 1779092

Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue

Haack, Nicole; Durry, Simone; Kafitz, Karl W; Chesler, Mitchell; Rose, Christine
Electrical activity in the brain is accompanied by significant ion fluxes across membranes, resulting in complex changes in the extracellular concentration of all major ions. As these ion shifts bear significant functional consequences, their quantitative determination is often required to understand the function and dysfunction of neural networks under physiological and pathophysiological conditions. In the present study, we demonstrate the fabrication and calibration of double-barreled ion-selective microelectrodes, which have proven to be excellent tools for such measurements in brain tissue. Moreover, so-called "concentric" ion-selective microelectrodes are also described, which, based on their different design, offer a far better temporal resolution of fast ion changes. We then show how these electrodes can be employed in acute brain slice preparations of the mouse hippocampus. Using double-barreled, potassium-selective microelectrodes, changes in the extracellular potassium concentration ([K(+)]o) in response to exogenous application of glutamate receptor agonists or during epileptiform activity are demonstrated. Furthermore, we illustrate the response characteristics of sodium-sensitive, double-barreled and concentric electrodes and compare their detection of changes in the extracellular sodium concentration ([Na(+)]o) evoked by bath or pressure application of drugs. These measurements show that while response amplitudes are similar, the concentric sodium microelectrodes display a superior signal-to-noise ratio and response time as compared to the double-barreled design. Generally, the demonstrated procedures will be easily transferable to measurement of other ions species, including pH or calcium, and will also be applicable to other preparations.
PMCID:4692589
PMID: 26381747
ISSN: 1940-087x
CID: 1779372

Autocrine Boost of NMDAR Current in Hippocampal CA1 Pyramidal Neurons by a PMCA-Dependent, Perisynaptic, Extracellular pH Shift

Chen, Huei-Ying; Chesler, Mitchell
The plasma membrane Ca(2+)-ATPase (PMCA) is found near postsynaptic NMDARs. This transporter is a Ca(2+)-H(+) exchanger that raises cell surface pH. We tested whether the PMCA acts in an autocrine fashion to boost pH-sensitive, postsynaptic NMDAR currents. In mouse hippocampal slices, NMDAR EPSCs in a singly activated CA1 pyramidal neuron were reduced when buffering was augmented by exogenous carbonic anhydrase (XCAR). This effect was blocked by the enzyme inhibitor benzolamide and mimicked by the addition of HEPES buffer. Similar EPSC reduction occurred when PMCA activation was prevented by dialysis of BAPTA or the PMCA inhibitor carboxyeosin. Using HEPES, BAPTA, or carboxyeosin, the effect of XCAR was completely occluded. XCAR similarly curtailed NMDAR EPSCs of minimal amplitude, but had no effect on small AMPAR responses. These results indicate that a significant fraction of the postsynaptic NMDAR current is reliant on a perisynaptic extracellular alkaline shift generated by the PMCA.
PMCID:4300330
PMID: 25609607
ISSN: 0270-6474
CID: 1440362

Carbonic Anhydrase Generates CO2 and H+ That Drive Spider Silk Formation Via Opposite Effects on the Terminal Domains

Andersson, Marlene; Chen, Gefei; Otikovs, Martins; Landreh, Michael; Nordling, Kerstin; Kronqvist, Nina; Westermark, Per; Jornvall, Hans; Knight, Stefan; Ridderstrale, Yvonne; Holm, Lena; Meng, Qing; Jaudzems, Kristaps; Chesler, Mitchell; Johansson, Jan; Rising, Anna
Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive beta-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO2) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.
PMCID:4122339
PMID: 25093327
ISSN: 1544-9173
CID: 1105392

NMDA Receptor-Dependent Afterdepolarizations Are Curtailed by Carbonic Anhydrase 14: Regulation of a Short-Term Postsynaptic Potentiation

Makani, Sachin; Chen, Huei-Ying; Esquenazi, Susana; Shah, Gul N; Waheed, Abdul; Sly, William S; Chesler, Mitchell
In the hippocampus, extracellular carbonic anhydrase (Car) speeds the buffering of an activity-generated rise in extracellular pH that impacts H(+)-sensitive NMDA receptors (NMDARs). We studied the role of Car14 in this brain structure, in which it is expressed solely on neurons. Current-clamp responses were recorded from CA1 pyramidal neurons in wild-type (WT) versus Car14 knock-out (KO) mice 2 s before (control) and after (test) a 10 pulse, 100 Hz afferent train. In both WT and KO, the half-width (HW) of the test response, and its number of spikes, were augmented relative to the control. An increase in presynaptic release was not involved, because AMPAR-mediated EPSCs were depressed after a train. The increases in HW and spike number were both greater in the Car14 KO. In 0 Mg(2+) saline with picrotoxin (using a 20 Hz train), the HW measures were still greater in the KO. The Car inhibitor benzolamide (BZ) enhanced the test response HW in the WT but had no effect on the already-prolonged HW in the KO. With intracellular MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d]-cyclohepten-5,10-imine maleate], the curtailed WT and KO responses were indistinguishable, and BZ caused no change. In contrast, the extracellular alkaline changes evoked by the train were not different between WT and KO, and BZ amplified these alkalinizations similarly. These data suggest that Car14 regulates pH transients in the perisynaptic microenvironment and govern their impact on NMDARs but plays little role in buffering pH shifts in the broader, macroscopic, extracellular space.
PMCID:3514870
PMID: 23175829
ISSN: 0270-6474
CID: 185082

Preemptive Regulation of Intracellular pH in Hippocampal Neurons by a Dual Mechanism of Depolarization-Induced Alkalinization

Svichar, Nataliya; Esquenazi, Susana; Chen, Huei-Ying; Chesler, Mitchell
Numerous studies have documented the mechanisms that regulate intracellular pH (pH(i)) in hippocampal neurons in response to an acid load. Here, we studied the response of pH(i) to depolarization in cultured hippocampal neurons. Elevation of external K(+) (6-30 mm) elicited an acid transient followed by a large net alkaline shift. Similar responses were observed in acutely dissociated hippocampal neurons. In Ca(2+)-free media, the acid response was curtailed and the alkaline shift enhanced. DIDS blocked the alkaline response and revealed a prolonged underlying acidification that was highly dependent on Ca(2+) entry. Similar alkaline responses could be elicited by AMPA, indicating that this rise in pH(i) was a depolarization-induced alkalinization (DIA). The DIA was found to consist of Cl(-)-dependent and Cl(-)-independent components, each accounting for approximately one-half of the peak amplitude. The Cl(-)-independent component was postulated to arise from operation of the electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1. Quantitative PCR and single-cell multiplex reverse transcription-PCR demonstrated message for NBCe1 in our hippocampal neurons. In neurons cultured from Slc4a4 knock-out (KO) mice, the DIA was reduced by approximately one-half compared with wild type, suggesting that NBCe1 was responsible for the Cl(-)-independent DIA. In Slc4a4 KO neurons, the remaining DIA was virtually abolished in Cl(-)-free media. These data demonstrate that DIA of hippocampal neurons occurs via NBCe1, and a parallel DIDS-sensitive, Cl(-)-dependent mechanism. Our results indicate that, by activating net acid extrusion in response to depolarization, hippocampal neurons can preempt a large, prolonged, Ca(2+)-dependent acidosis
PMCID:3135169
PMID: 21562261
ISSN: 1529-2401
CID: 132318