Try a new search

Format these results:

Searched for:

person:kaydeh01

Total Results:

155


Transport of vitamin E by differentiated Caco-2 cells

Anwar, Kamran; Kayden, Herbert J; Hussain, M Mahmood
In hepatocytes, vitamin E is secreted via the efflux pathway and is believed to associate with apolipoprotein B (apoB)-lipoproteins extracellularly. The molecular mechanisms involved in the uptake, intracellular trafficking, and secretion of dietary vitamin E by the intestinal cells are unknown. We observed that low concentrations of Tween-40 were better for the solubilization and delivery of vitamin E to differentiated Caco-2 cells, whereas high concentrations of Tween-40 and sera inhibited this uptake. Vitamin E uptake was initially rapid and then reached saturation. Subcellular localization revealed that vitamin E primarily accumulated in microsomal membranes. Oleic acid (OA) treatment, which induces chylomicron assembly and secretion, decreased microsomal membrane-bound vitamin E in a time-dependent manner. To study secretion, differentiated Caco-2 cells were pulse-labeled with vitamin E and chased in the presence and absence of OA. In the absence of OA, vitamin E was associated with intestinal high density lipoprotein (I-HDL), whereas OA-treated cells secreted vitamin E with I-HDL and chylomicrons. No extracellular transfer of vitamin E between these lipoproteins was observed. Glyburide, an antagonist of ABCA1, partially inhibited its secretion with I-HDL, whereas plasma HDL increased vitamin E efflux. An antagonist of microsomal triglyceride transfer protein, brefeldin A, and monensin specifically inhibited vitamin E secretion with chylomicrons. These studies indicate that vitamin E taken up by Caco-2 cells is stored in the microsomal membranes and secreted with chylomicrons and I-HDL. Transport via I-HDL might contribute to vitamin E absorption in patients with abetalipoproteinemia receiving large oral doses of the vitamin
PMID: 16569910
ISSN: 0022-2275
CID: 101157

Transport of vitamin E by differentiated Caco-2 cells [Meeting Abstract]

Anwar, K; Kayden, H; Hussain, M
ISI:000236942400169
ISSN: 1079-5642
CID: 63868

The genetic basis of vitamin E deficiency in humans

Kayden HJ
PMID: 11684382
ISSN: 0899-9007
CID: 39470

Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency

Gabsi, S; Gouider-Khouja, N; Belal, S; Fki, M; Kefi, M; Turki, I; Ben Hamida, M; Kayden, H; Mebazaa, R; Hentati, F
Ataxia with vitamin E (Vit E) defciency (AVED) is an autosomal recessive disorder caused by mutations of the alpha tocopherol transfer protein gene. The Friedreich ataxia phenotype is the most frequent clinical presentation. In AVED patients, serum Vit E levels are very low in the absence of intestinal malabsorption. As Vit E is a major antioxidant agent, Vit E deficiency is supposed to be responsible for the pathological process. Twenty-four AVED patients were fully investigated (electromyography, nerve conduction velocity (NVC) studies, somatosensory evoked potentials, cerebral computed tomography scan, sural nerve biopsy, genetic studies) and supplemented with Vit E (800 mg daily) during a 1-year period. Clinical evaluation was mainly based on the Ataxia Rating Scale (ARS) for cerebellar ataxia assessment and serum Vit E levels were monitored. Serum Vit E levels normalized and ARS scores decreased moderately but significantly suggesting clinical improvement. Better results were noted with mean disease duration < or = 15 years. Reflexes remained abolished and posterior column disturbances unchanged. Vitamin E supplementation in AVED patients stabilizes the neurological signs and can lead to mild improvement of cerebellar ataxia, especially in early stages of the disease.
PMID: 11554913
ISSN: 1351-5101
CID: 1094872

On the biological activity of vitamin E [Letter]

Kayden, H J; Wisniewski, T
PMID: 10871582
ISSN: 0002-9165
CID: 101158

Localization of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders

Copp RP; Wisniewski T; Hentati F; Larnaout A; Ben Hamida M; Kayden HJ
Vitamin E (alpha-tocopherol) is an essential nutrient and an important antioxidant. Its plasma levels are dependent upon oral intake, absorption and transfer of the vitamin to a circulating lipoprotein. The latter step is controlled by alpha-tocopherol transfer protein (alpha-TTP), which is a 278 amino acid protein encoded on chromosome 8, known to be synthesized in the liver. Mutations in alpha-TTP are associated with a neurological syndrome of spinocerebellar ataxia, called ataxia with vitamin E deficiency (AVED). Earlier studies suggested that alpha-TTP is found only in the liver. In order to establish whether alpha-TTP is expressed in the human brain, and what relationship this has to AVED, we studied immunohistochemically the presence of alpha-TTP in the brains of a patient with AVED, normal subjects, and patients with Alzheimer's disease (AD), Down's syndrome (DS), cholestatic liver disease (CLD) and abetalipoproteinemia (ABL). The neuropathology of both AD and DS is thought to be related in part to oxidative stress. The diseases of AVED, of cholestatic liver disease, and of abetalipoproteinemia are thought to be due to lack of circulating tocopherol, leading to inadequate protection against oxidative damage. We demonstrate the presence of alpha-TTP in cerebellar Purkinje cells in patients having vitamin E deficiency states or diseases associated with oxidative stress.
PMID: 10082886
ISSN: 0006-8993
CID: 6064

Evaluation of vitamin E potency - Reply [Letter]

Burton GW; Ingold KU; Traber MG; Kayden HJ
ORIGINAL:0004086
ISSN: 0002-9165
CID: 8126

Vitamin E dose-response studies in humans with use of deuterated RRR-alpha-tocopherol

Traber MG; Rader D; Acuff RV; Ramakrishnan R; Brewer HB; Kayden HJ
BACKGROUND: Supplemental vitamin E does not raise plasma alpha-tocopherol concentrations more than approximately 3-fold. OBJECTIVE: To elucidate the mechanism for the limitation in plasma alpha-tocopherol, we undertook human supplementation trials using incrementally increased doses of deuterated vitamin E. DESIGN: Plasma was obtained from 6 healthy, young adults (4 men and 2 women) during 3 sequential supplementation trials with doses of 15, 75, and 150 mg RRR-alpha-tocopheryl acetate labeled with deuterium (d3-RRR-alpha-tocopheryl acetate). A defined diet was provided on the day of deuterated vitamin E administration, but otherwise subjects ate ad libitum. RESULTS: The areas under the curves calculated from the plasma d3-RRR-alpha-tocopherol concentrations increased linearly with dose--a 10-fold increase in dose resulted in a 10-fold increase in area under the curve. d3-RRR-alpha-Tocopherol absorption and incorporation into plasma did not decrease with increasing dose. At 11 h, the 15-, 75-, and 150-mg doses resulted in 8+/-4%, 21+/-10%, and 37+/-20% labeling, respectively, of plasma vitamin E. Plasma total (labeled plus unlabeled) alpha-tocopherol concentrations before supplementation were 12+/-3 micromol/L and over the 96 h after the dose averaged 13.3+/-2.6, 15.4+/-3.0, and 16.7+/-4.9 micromol/L for the 15-, 75-, and 150-mg doses, respectively. CONCLUSIONS: d3-RRR-alpha-Tocopherol was incorporated into the plasma in preference to circulating plasma RRR-alpha-tocopherol. This could occur if the newly absorbed d3-RRR-alpha-tocopherol was preferentially used to replenish circulating vitamin E
PMID: 9771861
ISSN: 0002-9165
CID: 57272

Human plasma and tissue alpha-tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E

Burton GW; Traber MG; Acuff RV; Walters DN; Kayden H; Hughes L; Ingold KU
We report a comparison of natural and synthetic vitamin E in humans using deuterium labeling to permit the two forms of vitamin E to be measured independently in plasma and tissues of each subject. Differences in natural and synthetic vitamin E concentrations were measured directly under equal dosage conditions using an equimolar mixture of deuterated RRR-alpha-tocopheryl acetate and all-rac-alpha-tocopheryl acetate. Two groups of five adults took 30 mg of the mixture as a single dose and as eight consecutive daily doses, respectively. After a 1-mo interval the schedule was repeated but with a 10-fold higher dose (ie, 300 mg). In each case, the ratio of plasma d3-RRR-alpha-tocopherol to d6-all-rac-alpha-tocopherol (RRR:rac) increased from approximately 1.5-1.8 to approximately 2 after dosing ended. In an elective surgery study in which 22 patients were given 150 mg/d for up to 41 d before surgery, the RRR:rac in tissues was lower than in plasma and the percentage of deuterated alpha-tocopherol was lower in all tissues except gallbladder and liver. In a terminally ill patient given 30 mg/d for 361 d, plasma and tissue (x+/-SD) RRR-rac ratios (and % deuterated alpha-tocopherol) at autopsy were 2.06 (6.3%) and 1.71+/-0.24 (5.9+/-2.2%), respectively. In a second terminally ill patient given 300 mg/d for 615 d, the corresponding values were 2.11 (68%) and 2.01+/-0.17 (65+/-10%), respectively. The results indicated that natural vitamin E has roughly twice the availability of synthetic vitamin E. This 2:1 ratio is significantly higher than the currently accepted RRR:rac of 1.36:1.00. Gamma-Tocopherol, expressed as a fraction of total unlabeled tocopherols in 15 elective surgery patients, was 1.4-4.6 (mean: 2.6) times greater in adipose tissue, muscle, skin, and vein than in plasma, which is a substantially larger fraction than had been recognized previously
PMID: 9537614
ISSN: 0002-9165
CID: 57358

Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families

Cavalier L; Ouahchi K; Kayden HJ; Di Donato S; Reutenauer L; Mandel JL; Koenig M
Ataxia with vitamin E deficiency (AVED), or familial isolated vitamin E deficiency, is a rare autosomal recessive neurodegenerative disease characterized clinically by symptoms with often striking resemblance to those of Friedreich ataxia. We recently have demonstrated that AVED is caused by mutations in the gene for alpha-tocopherol transfer protein (alpha-TTP). We now have identified a total of 13 mutations in 27 families. Four mutations were found in >=2 independent families: 744delA, which is the major mutation in North Africa, and 513insTT, 486delT, and R134X, in families of European origin. Compilation of the clinical records of 43 patients with documented mutation in the alpha-TTP gene revealed differences from Friedreich ataxia: cardiomyopathy was found in only 19% of cases, whereas head titubation was found in 28% of cases and dystonia in an additional 13%. This study represents the largest group of patients and mutations reported for this often misdiagnosed disease and points to the need for an early differential diagnosis with Friedreich ataxia, in order to initiate therapeutic and prophylactic vitamin E supplementation before irreversible damage develops
PMCID:1376876
PMID: 9463307
ISSN: 0002-9297
CID: 57115