Try a new search

Format these results:

Searched for:

person:nwb2

Total Results:

377


Neuropilin-1 is essential for vascular endothelial growth factor A-mediated increase of sensory neuron activity and development of pain-like behaviors

Gomez, Kimberly; Duran, Paz; Tonello, Raquel; Allen, Heather N; Boinon, Lisa; Calderon-Rivera, Aida; Loya-López, Santiago; Nelson, Tyler S; Ran, Dongzhi; Moutal, Aubin; Bunnett, Nigel W; Khanna, Rajesh
Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. Here, we investigated whether peripheral sensory neurons and spinal cord hyperexcitability and pain behaviors were affected by the loss of NRP-1. Nrp-1 is expressed in both peptidergic and nonpeptidergic sensory neurons. A CRIPSR/Cas9 strategy targeting the second exon of nrp-1 gene was used to knockdown NRP-1. Neuropilin-1 editing in DRG neurons reduced VEGFA-mediated increases in CaV2.2 currents and sodium currents through NaV1.7. Neuropilin-1 editing had no impact on voltage-gated potassium channels. Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.
PMID: 37366599
ISSN: 1872-6623
CID: 5540182

Evolving acidic microenvironments during colitis provide selective analgesic targets for a pH-sensitive opioid

Degro, Claudius E; Jiménez-Vargas, Nestor Nivardo; Tsang, Quentin; Yu, Yang; Guzman-Rodriguez, Mabel; Alizadeh, Elahe; Hurlbut, David; Reed, David E; Lomax, Alan E; Stein, Christoph; Bunnett, Nigel W; Vanner, Stephen J
Targeting the acidified inflammatory microenvironment with pH-sensitive opioids is a novel approach for managing visceral pain while mitigating side effects. The analgesic efficacy of pH-dependent opioids has not been studied during the evolution of inflammation, where fluctuating tissue pH and repeated therapeutic dosing could influence analgesia and side effects. Whether pH-dependent opioids can inhibit human nociceptors during extracellular acidification is unexplored. We studied the analgesic efficacy and side-effect profile of a pH-sensitive fentanyl analog, (±)- N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide (NFEPP), during the evolution of colitis induced in mice with dextran sulphate sodium. Colitis was characterized by granulocyte infiltration, histological damage, and acidification of the mucosa and submucosa at sites of immune cell infiltration. Changes in nociception were determined by measuring visceromotor responses to noxious colorectal distension in conscious mice. Repeated doses of NFEPP inhibited nociception throughout the course of disease, with maximal efficacy at the peak of inflammation. Fentanyl was antinociceptive regardless of the stage of inflammation. Fentanyl inhibited gastrointestinal transit, blocked defaecation, and induced hypoxemia, whereas NFEPP had no such side effects. In proof-of-principle experiments, NFEPP inhibited mechanically provoked activation of human colonic nociceptors under acidic conditions mimicking the inflamed state. Thus, NFEPP provides analgesia throughout the evolution of colitis with maximal activity at peak inflammation. The actions of NFEPP are restricted to acidified layers of the colon, without common side effects in normal tissues. N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide could provide safe and effective analgesia during acute colitis, such as flares of ulcerative colitis.
PMID: 37326658
ISSN: 1872-6623
CID: 5610372

Targeting endosomal receptors, a new direction for polymers in nanomedicine

Ramirez-Garcia, Paulina D; Veldhuis, Nicholas A; Bunnett, Nigel W; Davis, Thomas P
In this perspective, we outline a new opportunity for exploiting nanoparticle delivery of antagonists to target G-protein coupled receptors localized in intracellular compartments. We discuss the specific example of antagonizing endosomal receptors involved in pain to develop long-lasting analgesics but also outline the broader application potential of this delivery approach. We discuss the materials used to target endosomal receptors and indicate the design requirements for future successful applications.
PMID: 37219363
ISSN: 2050-7518
CID: 5495752

Calcitonin Related Polypeptide Alpha Mediates Oral Cancer Pain

Tu, Nguyen Huu; Inoue, Kenji; Lewis, Parker K; Khan, Ammar; Hwang, Jun Hyeong; Chokshi, Varun; Dabovic, Branka Brukner; Selvaraj, Shanmugapriya; Bhattacharya, Aditi; Dubeykovskaya, Zinaida; Pinkerton, Nathalie M; Bunnett, Nigel W; Loomis, Cynthia A; Albertson, Donna G; Schmidt, Brian L
Oral cancer patients suffer pain at the site of the cancer. Calcitonin gene related polypeptide (CGRP), a neuropeptide expressed by a subset of primary afferent neurons, promotes oral cancer growth. CGRP also mediates trigeminal pain (migraine) and neurogenic inflammation. The contribution of CGRP to oral cancer pain is investigated in the present study. The findings demonstrate that CGRP-immunoreactive (-ir) neurons and neurites innervate orthotopic oral cancer xenograft tumors in mice. Cancer increases anterograde transport of CGRP in axons innervating the tumor, supporting neurogenic secretion as the source of CGRP in the oral cancer microenvironment. CGRP antagonism reverses oral cancer nociception in preclinical oral cancer pain models. Single-cell RNA-sequencing is used to identify cell types in the cancer microenvironment expressing the CGRP receptor components, receptor activity modifying protein 1 Ramp1 and calcitonin receptor like receptor (CLR, encoded by Calcrl). Ramp1 and Calcrl transcripts are detected in cells expressing marker genes for Schwann cells, endothelial cells, fibroblasts and immune cells. Ramp1 and Calcrl transcripts are more frequently detected in cells expressing fibroblast and immune cell markers. This work identifies CGRP as mediator of oral cancer pain and suggests the antagonism of CGRP to alleviate oral cancer pain.
PMCID:10341289
PMID: 37443709
ISSN: 2073-4409
CID: 5535282

The contribution of endocytosis to sensitization of nociceptors and synaptic transmission in nociceptive circuits

Tonello, Raquel; Anderson, Wayne B; Davidson, Steve; Escriou, Virginie; Yang, Lei; Schmidt, Brian L; Imlach, Wendy L; Bunnett, Nigel W
Chronic pain involves sensitization of nociceptors and synaptic transmission of painful signals in nociceptive circuits in the dorsal horn of the spinal cord. We investigated the contribution of clathrin-dependent endocytosis to sensitization of nociceptors by G protein-coupled receptors (GPCRs) and to synaptic transmission in spinal nociceptive circuits. We determined whether therapeutic targeting of endocytosis could ameliorate pain. mRNA encoding dynamin (Dnm) 1-3 and adaptor-associated protein kinase 1 (AAK1), which mediate clathrin-dependent endocytosis, were localized to primary sensory neurons of dorsal root ganglia of mouse and human and to spinal neurons in the dorsal horn of the mouse spinal cord by RNAScope®. When injected intrathecally to mice, Dnm and AAK1 siRNA or shRNA knocked-down Dnm and AAK1 mRNA in dorsal root ganglia neurons, reversed mechanical and thermal allodynia and hyperalgesia, and normalized non-evoked behavior in preclinical models of inflammatory and neuropathic pain. Intrathecally administered inhibiters of clathrin, Dnm and AAK1 also reversed allodynia and hyperalgesia. Disruption of clathrin, Dnm and AAK1 did not affect normal motor functions of behaviors. Patch clamp recordings of dorsal horn neurons revealed that Dnm1 and AAK1 disruption inhibited synaptic transmission between primary sensory neurons and neurons in lamina I/II of the spinal cord dorsal horn by suppressing release of synaptic vesicles from presynaptic primary afferent neurons. Patch clamp recordings from dorsal root ganglion nociceptors indicated that Dnm siRNA prevented sustained GPCR-mediated sensitization of nociceptors. By disrupting synaptic transmission in the spinal cord and blunting sensitization of nociceptors, endocytosis inhibitors offer a therapeutic approach for pain treatment.
PMID: 36378744
ISSN: 1872-6623
CID: 5374402

Therapeutic antagonism of the neurokinin 1 receptor in endosomes provides sustained pain relief

Hegron, Alan; Peach, Chloe J; Tonello, Raquel; Seemann, Philipp; Teng, Shavonne; Latorre, Rocco; Huebner, Harald; Weikert, Dorothee; Rientjes, Jeanette; Veldhuis, Nicholas A; Poole, Daniel P; Jensen, Dane D; Thomsen, Alex R B; Schmidt, Brian L; Imlach, Wendy L; Gmeiner, Peter; Bunnett, Nigel W
The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and βarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.
PMCID:10235985
PMID: 37216510
ISSN: 1091-6490
CID: 5503732

Protease-Activated Receptors in Health and Disease

Peach, Chloe J; Edgington-Mitchell, Laura E; Bunnett, Nigel W; Schmidt, Brian L
Although generally regarded as degradatory enzymes, certain proteases are also signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation, from immune, inflammatory epithelial and cancer cells, as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
PMID: 35901239
ISSN: 1522-1210
CID: 5276782

Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain

Latorre, Rocco; Ramírez-Garcia, Paulina D; Hegron, Alan; Grace, James L; Retamal, Jeffri S; Shenoy, Priyank; Tran, Mai; Aurelio, Luigi; Flynn, Bernard; Poole, Daniel P; Klein-Cloud, Rafael; Jensen, Dane D; Davis, Thomas P; Schmidt, Brian L; Quinn, John F; Whittaker, Michael R; Veldhuis, Nicholas A; Bunnett, Nigel W
Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NK1R) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NK1R antagonist aprepitant-amine for the treatment of chronic pain in mice. Nanostars continually released cargo for 24 h, trafficked through the endosomal system, and disrupted NK1R endosomal signaling. After intrathecal injection, nanostars accumulated in endosomes of spinal neurons. Nanostar-aprepitant reversed mechanical, thermal and cold allodynia and normalized nociceptive behavior more efficaciously than free aprepitant in preclinical models of neuropathic and inflammatory pain. Analgesia was maintained for >10 h. The sustained endosomal delivery of antagonists from slow-release nanostars provides effective and long-lasting reversal of chronic pain.
PMID: 35533442
ISSN: 1878-5905
CID: 5215272

Opioid-Induced Pronociceptive Signaling in the Gastrointestinal Tract Is Mediated by Delta-Opioid Receptor Signaling

Jaramillo-Polanco, Josue; Lopez-Lopez, Cintya; Yu, Yang; Neary, Emma; Hegron, Alan; Canals, Meritxell; Bunnett, Nigel W; Reed, David E; Lomax, Alan E; Vanner, Stephen J
Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.
PMCID:9034783
PMID: 35256532
ISSN: 1529-2401
CID: 5314002

Agonist that activates the µ-opioid receptor in acidified microenvironments inhibits colitis pain without side effects

Jiménez-Vargas, Nestor Nivardo; Yu, Yang; Jensen, Dane D; Bok, Diana Daeun; Wisdom, Matthew; Latorre, Rocco; Lopez, Cintya; Jaramillo-Polanco, Josue O; Degro, Claudius; Guzman-Rodriguez, Mabel; Tsang, Quentin; Snow, Zachary; Schmidt, Brian L; Reed, David E; Lomax, Alan Edward; Margolis, Kara Gross; Stein, Christoph; Bunnett, Nigel W; Vanner, Stephen J
OBJECTIVE:The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN/METHODS:Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS:NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit β-arrestins and evoke MOPr endocytosis. CONCLUSION/CONCLUSIONS:In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.
PMID: 33785555
ISSN: 1468-3288
CID: 4840882