Try a new search

Format these results:

Searched for:

person:bhatij03

in-biosketch:true

Total Results:

12


Stromal factors involved in prostate carcinoma metastasis to bone

Cooper, Carlton R; Chay, Christopher H; Gendernalik, James D; Lee, Hyung-Lae; Bhatia, Jasmine; Taichman, Russell S; McCauley, Laurie K; Keller, Evan T; Pienta, Kenneth J
BACKGROUND:Prostate carcinoma (PC) frequently metastasizes to bone, where it causes significant morbidity and mortality. Stromal elements in the primary and metastatic target organs are important mediators of tumor cell intravasation, chemoattraction, adhesion to target organ microvascular endothelium, extravasation, and growth at the metastatic site. METHODS:The role of stromal factors in bone metastasis was determined with a cyclic DNA microarray comparison of a bone-derived cell PC cell line with a soft tissue-derived cell PC cell line and by evaluating the effects of selected stromal components on PC cell chemotaxis, cell adhesion to human bone marrow endothelium (HBME), and PC cell growth. RESULTS:The authors demonstrate that PC cells express protease-activated receptor 1 (PAR1; thrombin receptor), and its expression is up-regulated in PC compared with normal prostate tissue. In addition, this overexpression was very pronounced in bone-derived PC cell lines (VCaP and PC-3) compared with soft tissue PC cell lines (DUCaP, DU145, and LNCaP). The authors report that bone stromal factors, including stromal cell-derived factor 1 (SDF-1) and collagen Type I peptides, are chemoattractants for PC cells, and they demonstrate that some of these factors (e.g., extracellular matrix components, transforming growth factor beta, bone morphogenic proteins [BMPs], and SDF-1) significantly alter PC-HBME interaction in vitro. Finally, stromal factors, such as BMPs, can regulate the proliferation of PC cells in vitro. CONCLUSIONS:Soluble and insoluble elements of the stroma are involved in multiple steps of PC metastasis to bone. The authors hypothesize that PAR1 may play a central role in prostate tumorigenesis.
PMID: 12548571
ISSN: 0008-543x
CID: 5043802

The regulation of prostate cancer cell adhesion to human bone marrow endothelial cell monolayers by androgen dihydrotestosterone and cytokines

Cooper, Carlton R; Bhatia, Jasmine K; Muenchen, Heather J; McLean, Lisa; Hayasaka, Satoru; Taylor, Jeremy; Poncza, Paul J; Pienta, Kenneth J
A previous study from our laboratory suggested that prostate cancer metastasis to bone may be mediated, in part, by preferential adhesion to human bone marrow endothelial (HBME) cells. Tumor cell adhesion to endothelial cells may be modulated by the effect of cytokines on cell adhesion molecules (CAMs). Tumor necrosis factor-alpha (TNF-alpha) regulates VCAM expression on the endothelium and this effect is enhanced by dihydrotestosterone (DHT). Transforming growth factor-beta (TGF-beta) stimulates the expression of alpha2beta1 integrin on PC-3 cells. The current study investigated the effects of the above cytokines and DHT (singularly and in various combinations) upon HBME and prostate cancer cell expression of VCAM, alpha2 integrin subunit, and beta1 integrin subunit by flow cytometry. We also monitored the effects of the above treatments on PC-3 cell adhesion to HBME monolayers. The data demonstrate that none of the treatments significantly altered the expression of selected CAMs on HBME cell and neoplastic prostate cell lines. The treatment of HBME monolayers with various combinations of cytokines and DHT prior to performing adhesion assays with PC-3 demonstrates that treatments containing TGF-beta reduced PC-3 cell adhesion to HBME monolayers by 32% or greater (P < 0.05). The reduction in PC-3 cell adhesion to TGF-beta-treated HBME monolayers was dose dependent. Interestingly, LNCaP cells but not PC-3 cells treated with TGF-beta had a reduced ability to adhere to untreated HBME monolayers. These results suggest that TGF-beta may reduce tumor cell adhesion to bone marrow microvascular endothelium, in vivo. The biological significance of this observation is discussed.
PMID: 11918080
ISSN: 0262-0898
CID: 5043792