Try a new search

Format these results:

Searched for:

person:ik474

in-biosketch:yes

Total Results:

46


Susceptibility-Weighted Imaging and Magnetic Resonance Spectroscopy in Concussion

Kirov, Ivan I; Whitlow, Christopher T; Zamora, Carlos
Although susceptibility-weighted imaging (SWI) studies have suggested an increased number of microhemorrhages in concussion, most show no significant differences compared with controls. There have been mixed results on using SWI to predict neurologic outcomes. Drawbacks include inability to time microhemorrhages and difficulty in attributing them to the concussion. Magnetic resonance spectroscopy (MRS) in concussion can identify metabolic abnormalities, with many studies showing correlations with clinical outcome. Applications in individual patients are impeded by conflicting data and lack of consensus on an optimal protocol. Therefore, currently MRS has most utility in group-level comparisons designed to reveal the pathophysiology of concussion.
PMID: 29157856
ISSN: 1557-9867
CID: 2791632

Whole brain neuronal abnormalities in focal quantified with proton MR spectroscopy

Kirov, Ivan I; Kuzniecky, Ruben; Hetherington, Hoby P; Soher, Brian J; Davitz, Matthew S; Babb, James S; Pardoe, Heath R; Pan, Jullie W; Gonen, Oded
OBJECTIVE:To test the hypothesis that localization-related epilepsy is associated with widespread neuronal dysfunction beyond the ictal focus, reflected by a decrease in patients' global concentration of their proton MR spectroscopy (1H-MRS) observed marker, N-acetyl-aspartate (NAA). METHODS:Thirteen patients with localization-related epilepsy (7 men, 6 women) 40±13 (mean±standard-deviation)years old, 8.3±13.4years of disease duration; and 14 matched controls, were scanned at 3 T with MRI and whole-brain (WB) 1H MRS. Intracranial fractions of brain volume, gray and white matter (fBV, fGM, fWM) were segmented from the MRI, and global absolute NAA creatine (Cr) and choline (Cho) concentrations were estimated from their WB 1H MRS. These metrics were compared between patients and controls using an unequal variance t test. RESULTS:Patients' fBV, fGM and fWM: 0.81±0.07, 0.47±0.04, 0.31±0.04 were not different from controls' 0.79±0.05, 0.48±0.04, 0.32±0.02; nor were their Cr and Cho concentrations: 7.1±1.1 and 1.3±0.2 millimolar (mM) versus 7.7±0.7 and 1.4±0.1mM (p>0.05 all). Patients' global NAA concentration: 11.5±1.5 mM, however, was 12% lower than controls' 13.0±0.8mM (p=0.004). CONCLUSIONS:These findings indicate that neuronal dysfunction in localization-related epilepsy extends globally, beyond the ictal zone, but without atrophy or spectroscopic evidence of other pathology. This suggests a diffuse decline in the neurons' health, rather than their number, early in the disease course. WB 1H-MRS assessment, therefore, may be a useful tool for quantification of global neuronal dysfunction load in epilepsy.
PMID: 29212047
ISSN: 1872-6844
CID: 2861722

Global brain metabolic quantification with whole-head proton MRS at 3 T

Kirov, Ivan I; Wu, William E; Soher, Brian J; Davitz, Matthew S; Huang, Jeffrey H; Babb, James S; Lazar, Mariana; Fatterpekar, Girish; Gonen, Oded
Total N-acetyl-aspartate + N-acetyl-aspartate-glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS (1 H-MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%-65% of the brain. Here we wish to demonstrate that non-localized, whole-head (WH) 1 H-MRS captures just the brain's contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 +/- 8.5 years old, were recruited and underwent T1 -weighted MRI for tissue segmentation, non-localizing, approximately 3 min WH 1 H-MRS (TE /TR /TI = 5/10/940 ms) and 30 min 1 H-MR spectroscopic imaging (MRSI) (TE /TR = 35/2100 ms) in a 360 cm3 volume of interest (VOI) at the brain's center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 +/- 0.5, 5.5 +/- 0.4 and 1.3 +/- 0.2 mM, were all within 10% of the WH: 8.6 +/- 1.1, 6.0 +/- 1.0 and 1.3 +/- 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the "brain-only" VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 +/- 0.03 (brain approximately 30% of WH volume). Air-tissue susceptibility-driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skull's Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non-localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH-1 H-MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders.
PMCID:5609859
PMID: 28678429
ISSN: 1099-1492
CID: 2617322

Neuropsychological Testing, MR Spectroscopy and Patient Symptom Reports Reveal Two Distinct Stories in mTBI...American Congress of Rehabilitation Medicine Annual Conference 23 - 28 October 2017, Atlanta, GA

Kucukboyaci, Nuri Erkut; Gonen, Oded; Lui, Yvonne; Rath, Joseph; Kirov, Ivan
CINAHL:125310827
ISSN: 0003-9993
CID: 2735442

Proton MR spectroscopy of lesion evolution in multiple sclerosis: Steady-state metabolism and its relationship to conventional imaging

Kirov, Ivan I; Liu, Shu; Tal, Assaf; Wu, William E; Davitz, Matthew S; Babb, James S; Rusinek, Henry; Herbert, Joseph; Gonen, Oded
Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI) in pre-lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1-hypointensity and T2-volume. Within 10 patients with relapsing-remitting course, there were 180 regions-of-interest consisting of up to seven semi-annual follow-ups of normal-appearing white matter (NAWM, n = 10), pre-lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre-lesional tissue had higher Cr and Cho, while compared with lesions, pre-lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre- and post-formation, suggesting no long-term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1-hypointensity, with lesions larger than 1.5 cm3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady-state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp, 2017. (c) 2017 Wiley Periodicals, Inc.
PMCID:5510951
PMID: 28523763
ISSN: 1097-0193
CID: 2563072

When are metabolic ratios superior to absolute quantification? A statistical analysis

Hoch, Sarah E; Kirov, Ivan I; Tal, Assaf
Metabolite levels measured using magnetic resonance spectroscopy (MRS) are often expressed as ratios rather than absolute concentrations. However, the inter-subject variability of the denominator metabolite can introduce uncertainty into a metabolite ratio. In a clinical setting, there are no guidelines on whether ratios or absolute quantification should be used for a more accurate classification of normal versus abnormal results based on their statistical properties. In a research setting, the choice of one over the other can have significant implications on sample size, which must be factored in at the study design stage. Herein, we derive the probability distribution function for the ratio of two normally distributed random variables, and present analytical expressions for the comparison of ratios with absolute quantification in terms of both sample size and area under the receiver operator characteristic curve. The two approaches are compared for typical metabolite values found in the literature, and their respective merits are illustrated using previously acquired clinical MRS data in two pathologies: mild traumatic brain injury and multiple sclerosis. Our analysis shows that the decision between ratios and absolute quantification is non-trivial: in some cases, ratios might offer a reduction in sample size, whereas, in others, absolute quantification might prove more desirable for individual (i.e. clinical) use. The decision is straightforward and exact guidelines are provided in the text, given that population means and standard deviations of numerator and denominator can be reliably estimated.
PMID: 28272763
ISSN: 1099-1492
CID: 2477112

Quantifying Global-Brain Metabolite Level Changes with Whole-Head Proton MR Spectroscopy at 3T

Davitz, Matthew S; Wu, William E; Soher, Brian J; Babb, James S; Kirov, Ivan I; Huang, Jeffrey; Fatterpekar, Girish; Gonen, Oded
BACKGROUND AND PURPOSE: To assess the sensitivity of non-localized, whole-head 1H-MRS to an individual's serial changes in total-brain NAA, Glx, Cr and Cho concentrations - metabolite metrics often used as surrogate markers in neurological pathologies. MATERIALS AND METHODS: In this prospective study, four back-to-back (single imaging session) and three serial (successive sessions) non-localizing, ~3min 1H-MRS (TE/TR/TI=5/104/940ms) scans were performed on 18 healthy young volunteers: 9 women, 9 men: 29.9+/-7.6 [mean+/-standard deviation (SD)] years old. These were analyzed by calculating a within-subject coefficient of variation (CV=SD/mean) to assess intra- and inter-scan repeatability and prediction intervals. This study was Health Insurance Portability and Accountability Act-compliant. All subjects gave Institutional Review Board-approved written, informed consent. RESULTS: The intra-scan CVs for the NAA, Glx, Cr and Cho were: 3.9+/-1.8%, 7.3+/-4.6%, 4.0+/-3.4% and 2.5+/-1.6%, and the corresponding inter-scan (longitudinal) values were: 7.0+/-3.1%, 10.6+/-5.6%, 7.6+/-3.5% and 7.0+/-3.9%. This method is shown to have 80% power to detect changes of 14%, 27%, 26% and 19% between two serial measurements in a given individual. CONCLUSIONS: Subject to the assumption that in neurological disorders NAA, Glx, Cr and Cho changes represent brain-only pathology and not muscles, bone marrow, adipose tissue or epithelial cells, this approach enables us to quantify them, thereby adding specificity to the assessment of the total disease load. This will facilitate monitoring diffuse pathologies with faster measurement, more extensive (~90%) spatial coverage and sensitivity than localized 1H-MRS.
PMCID:5125897
PMID: 27580518
ISSN: 1873-5894
CID: 2232542

New rapid, accurate T2 quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients

Shepherd, Timothy M; Kirov, Ivan I; Charlson, Erik; Bruno, Mary; Babb, James; Sodickson, Daniel K; Ben-Eliezer, Noam
INTRODUCTION: Quantitative T2 mapping may provide an objective biomarker for occult nervous tissue pathology in relapsing-remitting multiple sclerosis (RRMS). We applied a novel echo modulation curve (EMC) algorithm to identify T2 changes in normal-appearing brain regions of subjects with RRMS (N = 27) compared to age-matched controls (N = 38). METHODS: The EMC algorithm uses Bloch simulations to model T2 decay curves in multi-spin-echo MRI sequences, independent of scanner, and scan-settings. T2 values were extracted from normal-appearing white and gray matter brain regions using both expert manual regions-of-interest and user-independent FreeSurfer segmentation. RESULTS: Compared to conventional exponential T2 modeling, EMC fitting provided more accurate estimations of T2 with less variance across scans, MRI systems, and healthy individuals. Thalamic T2 was increased 8.5% in RRMS subjects (p < 0.001) and could be used to discriminate RRMS from healthy controls well (AUC = 0.913). Manual segmentation detected both statistically significant increases (corpus callosum & temporal stem) and decreases (posterior limb internal capsule) in T2 associated with RRMS diagnosis (all p < 0.05). In healthy controls, we also observed statistically significant T2 differences for different white and gray matter structures. CONCLUSIONS: The EMC algorithm precisely characterizes T2 values, and is able to detect subtle T2 changes in normal-appearing brain regions of RRMS patients. These presumably capture both axon and myelin changes from inflammation and neurodegeneration. Further, T2 variations between different brain regions of healthy controls may correlate with distinct nervous tissue environments that differ from one another at a mesoscopic length-scale.
PMCID:5318543
PMID: 28239545
ISSN: 2213-1582
CID: 2471012

Metabolic Abnormalities in the Hippocampus of Patients with Schizophrenia: A 3D Multivoxel MR Spectroscopic Imaging Study at 3T

Meyer, E J; Kirov, I I; Tal, A; Davitz, M S; Babb, J S; Lazar, M; Malaspina, D; Gonen, O
BACKGROUND AND PURPOSE: Schizophrenia is well-known to be associated with hippocampal structural abnormalities. We used 1H-MR spectroscopy to test the hypothesis that these abnormalities are accompanied by NAA deficits, reflecting neuronal dysfunction, in patients compared with healthy controls. MATERIALS AND METHODS: Nineteen patients with schizophrenia (11 men; mean age, 40.6 +/- 10.1 years; mean disease duration, 19.5 +/- 10.5 years) and 11 matched healthy controls (5 men; mean age, 33.7 +/- 10.1 years) underwent MR imaging and multivoxel point-resolved spectroscopy (TE/TR, 35/1400 ms) 1H-MRS at 3T to obtain their hippocampal GM absolute NAA, Cr, Cho, and mIns concentrations. Unequal variance t tests and ANCOVA were used to compare patients with controls. Bilateral volumes from manually outlined hippocampal masks were compared by using unequal variance t tests. RESULTS: Patients' average hippocampal GM Cr concentrations were 19% higher than that of controls, 8.7 +/- 2.2 versus 7.4 +/- 1.2 mmol/L (P < .05); showing no differences, concentrations in NAA were 8.8 +/- 1.6 versus 8.7 +/- 1.2 mmol/L; in Cho, 2.3 +/- 0.7 versus 2.1 +/- 0.3 mmol/L; and in mIns, 6.1 +/- 1.5 versus 5.2 +/- 0.9 (all P > .1). There was a positive correlation between mIns and Cr in patients (r = 0.57, P = .05) but not in controls. The mean bilateral hippocampal volume was approximately 10% lower in patients: 7.5 +/- 0.9 versus 8.4 +/- 0.7 cm3 (P < .05). CONCLUSIONS: These findings suggest that the hippocampal volume deficit in schizophrenia is not due to net loss of neurons, in agreement with histopathology studies but not with prior 1H-MR spectroscopy reports. Elevated Cr is consistent with hippocampal hypermetabolism, and its correlation with mIns may also suggest an inflammatory process affecting some cases; these findings may suggest treatment targets and markers to monitor them.
PMCID:5161606
PMID: 27444940
ISSN: 1936-959x
CID: 2185592

MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update

Wu, Xin; Kirov, Ivan I; Gonen, Oded; Ge, Yulin; Grossman, Robert I; Lui, Yvonne W
Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. ((c)) RSNA, 2016.
PMCID:4886705
PMID: 27183405
ISSN: 1527-1315
CID: 2111672