Try a new search

Format these results:

Searched for:

person:jah12

in-biosketch:yes

Total Results:

52


Functional Interactions Between rsks-1/S6K, glp-1/Notch, and Regulators of Caenorhabditis elegans Fertility and Germline Stem Cell Maintenance

Roy, Debasmita; Kahler, David J; Yun, Chi; Hubbard, E Jane A
The proper accumulation and maintenance of stem cells is critical for organ development and homeostasis. The Notch signaling pathway maintains stem cells in diverse organisms and organ systems. In Caenorhabditis elegans, GLP-1/Notch activity prevents germline stem cell (GSC) differentiation. Other signaling mechanisms also influence the maintenance of GSCs, including the highly-conserved TOR substrate ribosomal protein S6 kinase. Although C. elegans bearing either a null mutation in rsks-1/S6K or a reduction-of-function (rf) mutation in glp-1/Notch produce half the normal number of adult germline progenitors, virtually all these single mutant animals are fertile. However, glp-1(rf)rsks-1(null) double mutant animals are all sterile, and in about half of their gonads, all GSCs differentiate, a distinctive phenotype associated with a significant reduction or loss of GLP-1 signaling. How rsks-1/S6K promotes GSC fate is unknown. Here, we determine that rsks-1/S6K acts germline-autonomously to maintain GSCs, and that it does not act through Cyclin-E or MAP kinase in this role. We found that interfering with translation also enhances glp-1(rf), but that regulation through rsks-1 cannot fully account for this effect. In a genome-scale RNAi screen for genes that act similarly to rsks-1/S6K, we identified 56 RNAi enhancers of glp-1/Notch sterility, many of which were previously not known to interact functionally with Notch. Further investigation revealed six candidates that, by genetic criteria, act linearly with rsks-1/S6K. These include genes encoding translation-related proteins, cacn-1/Cactin, an RNA exosome component and a Hedgehog-related ligand. We found that additional Hedgehog-related ligands may share functional relationships with glp-1/Notch and rsks-1/S6K in maintaining germline progenitors.
PMID: 30126834
ISSN: 2160-1836
CID: 3246332

The DSL ligand APX-1 is required for normal ovulation in C. elegans

McGovern, Marie; Castaneda, Perla Gisela; Pekar, Olga; Vallier, Laura G; Cram, Erin J; Hubbard, E Jane Albert
DSL ligands activate the Notch receptor in many cellular contexts across metazoa to specify cell fate. In addition, Notch receptor activity is implicated in post-mitotic morphogenesis and neuronal function. In C. elegans, the DSL family ligand APX-1 is expressed in a subset of cells of the proximal gonad lineage, where it can act as a latent proliferation-promoting signal to maintain proximal germline tumors. Here we examine apx-1 in the proximal gonad and uncover a role in the maintenance of normal ovulation. Depletion of apx-1 causes an endomitotic oocyte (Emo) phenotype and ovulation defects. We find that lag-2 can substitute for apx-1 in this role, that the ovulation defect is partially suppressed by loss of ipp-5, and that lin-12 depletion causes a similar phenotype. In addition, we find that the ovulation defects are often accompanied by a delay of spermathecal distal neck closure after oocyte entry. Although calcium oscillations occur in the spermatheca, calcium signals are abnormal when the distal neck does not close completely. Moreover, oocytes sometimes cannot properly transit through the spermatheca, leading to fragmentation of oocytes once the neck closes. Finally, abnormal oocytes and neck closure defects are seen occasionally when apx-1 or lin-12 activity is reduced in adult animals, suggesting a possible post-developmental role for APX-1 and LIN-12 signaling in ovulation.
PMCID:5957500
PMID: 29371032
ISSN: 1095-564x
CID: 3031872

Linking the environment, DAF-7/TGFbeta signaling and LAG-2/DSL ligand expression in the germline stem cell niche

Pekar, Olga; Ow, Maria C; Hui, Kailyn Y; Noyes, Marcus B; Hall, Sarah E; Hubbard, E Jane Albert
The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFbeta signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFbeta causes a DAF-1/TGFbetaR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFbeta signaling promotes expression of lag-2 in the DTC in a daf-3-dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFbeta signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool.
PMCID:5592813
PMID: 28811311
ISSN: 1477-9129
CID: 2669152

How computational models contribute to our understanding of the germ line

Atwell, Kathryn; Dunn, Sara-Jane; Osborne, James M; Kugler, Hillel; Hubbard, E Jane Albert
Computational models are an invaluable tool in modern biology. They provide a framework within which to summarize existing knowledge, enable competing hypotheses to be compared qualitatively and quantitatively, and to facilitate the interpretation of complex data. Moreover, models allow questions to be investigated that are difficult to approach experimentally. Theories can be tested in context, identifying the gaps in our understanding and potentially leading to new hypotheses. Models can be developed on a variety of scales and with different levels of mechanistic detail, depending on the available data, the biological questions of interest, and the available mathematical and computational tools. The goal of this review is to provide a broad picture of how modeling has been applied to reproductive biology. Specifically, we look at four uses of modeling: i) comparing hypotheses, ii) interpreting data, iii) exploring experimentally challenging questions, and iv) hypothesis evaluation and generation. We present examples of each of these applications in reproductive biology, drawing from a range of organisms - including Drosophila, Caenorhabditis elegans, mouse, and humans. We aim to describe the data and techniques used to construct each model, and to highlight the benefits of modeling to the field, as complementary to experimental work
PMCID:5568140
PMID: 27627621
ISSN: 1098-2795
CID: 2246982

Cell cycle features of C. elegans germline stem/progenitor cells vary temporally and spatially

Roy, Debasmita; Michaelson, David; Hochman, Tsivia; Santella, Anthony; Bao, Zhirong; Goldberg, Judith D; Hubbard, E Jane Albert
Many organisms accumulate a pool of germline stem cells during development that is maintained in later life. The dynamics of establishment, expansion and homeostatic maintenance of this pool are subject to both developmental and physiological influences including the availability of a suitable niche microenvironment, nutritional status, and age. Here, we investigated the dynamics of germline proliferation during stages of expansion and homeostasis, using the C. elegans germ line as a model. The vast majority of germ cells in the proliferative zone are in interphase stages of mitosis (G1, S, G2) rather than in the active mitotic (M) phase. We examined mitotic index and DNA content, comparing different life stages, mutants, and physiological conditions. We found that germ cells in larval stages cycle faster than in adult stages, but that this difference could not be attributed to sexual fate of the germ cells. We also found that larval germ cells exhibit a lower average DNA content compared to adult germ cells. We extended our analysis to consider the effects of distance from the niche and further found that the spatial pattern of DNA content differs between larval and adult stages in the wild type and among mutants in pathways that interfere with cell cycle progression, cell fate, or both. Finally, we characterized expansion of the proliferative pool of germ cells during adulthood, using a regeneration paradigm (ARD recovery) in which animals are starved and re-fed. We compared adult stage regeneration and larval stage expansion, and found that the adult germ line is capable of rapid accumulation but does not sustain a larval-level mitotic index nor does it recapitulate the larval pattern of DNA content. The regenerated germ line does not reach the number of proliferative zone nuclei seen in the continuously fed adult. Taken together, our results suggest that cell cycle dynamics are under multiple influences including distance from the niche, age and/or maturation of the germ line, nutrition and, possibly, latitude for physical expansion.
PMCID:4827254
PMID: 26577869
ISSN: 1095-564x
CID: 1848562

Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle

Atwell, Kathryn; Qin, Zhao; Gavaghan, David; Kugler, Hillel; Hubbard, E Jane Albert; Osborne, James M
The C. elegans germ line is an outstanding model system to study the control of cell division and differentiation. While many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells may be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems.
PMCID:4712881
PMID: 26428008
ISSN: 1477-9129
CID: 1789982

Non-autonomous DAF-16/FOXO activity antagonizes age-related loss of C. elegans germline stem/progenitor cells

Qin, Zhao; Hubbard, E Jane Albert
Stem cells maintain tissues and organs over the lifespan of individuals. How aging influences this process is unclear. Here we investigate the effects of aging on C. elegans germline stem/progenitor cells and show that the progenitor pool is depleted over time in a manner dependent on inhibition of DAF-16/FOXO by insulin/IGF-1 signalling (IIS). Our data indicate that DAF-16/FOXO activity in certain somatic gonad cells is required for germline progenitor maintenance, and that this role is separable from the effect of DAF-16/FOXO on organismal aging. In addition, blocking germ cell flux, similar to reducing IIS, maintains germline progenitors. This effect is partially dependent on gonadal DAF-16/FOXO activity. Our results imply that (1) longevity pathways can regulate aging stem cells through anatomically separable mechanisms, (2) stem cell maintenance is not necessarily prioritized and (3) stem cell regulation can occur at the level of an entire organ system such as the reproductive system.
PMCID:4432587
PMID: 25960195
ISSN: 2041-1723
CID: 1578702

FLP/FRT and Cre/lox recombination technology in C. elegans

Hubbard, E Jane Albert
One of the most powerful aspects of biological inquiry using model organisms is the ability to control gene expression. A holy grail is both temporal and spatial control of the expression of specific gene products - that is, the ability to express or withhold the activity of genes or their products in specific cells at specific times. Ideally such a method would also regulate the precise levels of gene activity, and alterations would be reversible. The related goal of controlled or purposefully randomized expression of visible markers is also tremendously powerful. While not all of these feats have been accomplished in Caenorhabditis elegans to date, much progress has been made, and recent technologies put these goals within closer reach. Here, I present published examples of successful two-component site-specific recombination in C. elegans. These technologies are based on the principle of controlled intra-molecular excision or inversion of DNA sequences between defined sites, as driven by FLP or Cre recombinases. I discuss several prospects for future applications of this technology.
PMCID:4210360
PMID: 24874786
ISSN: 1046-2023
CID: 1131662

Physiological control of germline development

Hubbard, E Jane Albert; Korta, Dorota Z; Dalfo, Diana
The intersection between developmental programs and environmental conditions that alter physiology is a growing area of research interest. The C. elegans germ line is emerging as a particularly sensitive and powerful model for these studies. The germ line is subject to environmentally regulated diapause points that allow worms to withstand harsh conditions both prior to and after reproduction commences. It also responds to more subtle changes in physiological conditions. Recent studies demonstrate that different aspects of germ line development are sensitive to environmental and physiological changes and that conserved signaling pathways such as the AMPK, Insulin/IGF, TGFbeta, and TOR-S6K, and nuclear hormone receptor pathways mediate this sensitivity. Some of these pathways genetically interact with but appear distinct from previously characterized mechanisms of germline cell fate control such as Notch signaling. Here, we review several aspects of hermaphrodite germline development in the context of "feasting," "food-limited," and "fasting" conditions. We also consider connections between lifespan, metabolism and the germ line, and we comment on special considerations for examining germline development under altered environmental and physiological conditions. Finally, we summarize the major outstanding questions in the field.
PMCID:3760422
PMID: 22872476
ISSN: 0065-2598
CID: 174356

Sensory Regulation of the C. elegans Germline through TGF-beta-Dependent Signaling in the Niche

Dalfo, Diana; Michaelson, David; Hubbard, E Jane Albert
The proliferation/differentiation balance of stem and progenitor cell populations must respond to the physiological needs of the organism [1, 2]. Mechanisms underlying this plasticity are not well understood. The C. elegans germline provides a tractable system to study the influence of the environment on progenitor cells (stem cells and their proliferative progeny). Germline progenitors accumulate during larval stages to form an adult pool from which gametes are produced. Notch pathway signaling from the distal tip cell (DTC) niche to the germline maintains the progenitor pool [3-5], and the larval germline cell cycle is boosted by insulin/IGF-like receptor signaling [6]. Here we show that, independent of its role in the dauer decision, TGF-beta regulates the balance of proliferation versus differentiation in the C. elegans germline in response to sensory cues that report population density and food abundance. Ciliated ASI sensory neurons are required for TGF-beta-mediated expansion of the larval germline progenitor pool, and the TGF-beta receptor pathway acts in the germline stem cell niche. TGF-beta signaling thereby couples germline development to the quality of the environment, providing a novel cellular and molecular mechanism linking sensory experience of the environment to reproduction.
PMCID:3633564
PMID: 22483938
ISSN: 0960-9822
CID: 166510