Try a new search

Format these results:

Searched for:

person:jonesd28

in-biosketch:yes

Total Results:

53


Urine Metabolome Dynamics Discriminate Influenza Vaccination Response

Rodrick, Tori C; Siu, Yik; Carlock, Michael A; Ross, Ted M; Jones, Drew R
Influenza represents a major and ongoing public health hazard. Current collaborative efforts are aimed toward creating a universal flu vaccine with the goals of both improving responses to vaccination and increasing the breadth of protection against multiple strains and clades from a single vaccine. As an intermediate step toward these goals, the current work is focused on evaluating the systemic host response to vaccination in both normal and high-risk populations, such as the obese and geriatric populations, which have been linked to poor responses to vaccination. We therefore employed a metabolomics approach using a time-course (n = 5 time points) of the response to human vaccination against influenza from the time before vaccination (pre) to 90 days following vaccination. We analyzed the urinary profiles of a cohort of subjects (n = 179) designed to evenly sample across age, sex, BMI, and other demographic factors, stratifying their responses to vaccination as "High", "Low", or "None" based on the seroconversion measured by hemagglutination inhibition assay (HAI) from plasma samples at day 28 post-vaccination. Overall, we putatively identified 15,903 distinct, named, small-molecule structures (4473 at 10% FDR) among the 895 samples analyzed, with the aim of identifying metabolite correlates of the vaccine response, as well as prognostic and diagnostic markers from the periods before and after vaccination, respectively. Notably, we found that the metabolic profiles could unbiasedly separate the high-risk High-responders from the high-risk None-responders (obese/geriatric) within 3 days post-vaccination. The purine metabolites Guanine and Hypoxanthine were negatively associated with high seroconversion (p = 0.0032, p < 0.0001, respectively), while Acetyl-Leucine and 5-Aminovaleric acid were positively associated. Further changes in Cystine, Glutamic acid, Kynurenine and other metabolites implicated early oxidative stress (3 days) after vaccination as a hallmark of the High-responders. Ongoing efforts are aimed toward validating these putative markers using a ferret model of influenza infection, as well as an independent cohort of human seasonal vaccination and human challenge studies with live virus.
PMCID:9861122
PMID: 36680282
ISSN: 1999-4915
CID: 5419342

A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma

Zhou, Royce W; Xu, Jia; Martin, Tiphaine C; Zachem, Alexis L; He, John; Ozturk, Sait; Demircioglu, Deniz; Bansal, Ankita; Trotta, Andrew P; Giotti, Bruno; Gryder, Berkley; Shen, Yao; Wu, Xuewei; Carcamo, Saul; Bosch, Kaitlyn; Hopkins, Benjamin; Tsankov, Alexander; Steinhagen, Randolph; Jones, Drew R; Asara, John; Chipuk, Jerry E; Brody, Rachel; Itzkowitz, Steven; Chio, Iok In Christine; Hasson, Dan; Bernstein, Emily; Parsons, Ramon E
Tumors exhibit enhancer reprogramming compared to normal tissue. The etiology is largely attributed to cell-intrinsic genomic alterations. Here, using freshly resected primary CRC tumors and patient-matched adjacent normal colon, we find divergent epigenetic landscapes between CRC tumors and cell lines. Intriguingly, this phenomenon extends to highly recurrent aberrant super-enhancers gained in CRC over normal. We find one such super-enhancer activated in epithelial cancer cells due to surrounding inflammation in the tumor microenvironment. We restore this super-enhancer and its expressed gene, PDZK1IP1, following treatment with cytokines or xenotransplantation into nude mice, thus demonstrating cell-extrinsic etiology. We demonstrate mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. We show this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens.
PMCID:9576746
PMID: 36253360
ISSN: 2041-1723
CID: 5352412

Resurrecting essential amino acid biosynthesis in mammalian cells

Trolle, Julie; McBee, Ross M; Kaufman, Andrew; Pinglay, Sudarshan; Berger, Henri; German, Sergei; Liu, Liyuan; Shen, Michael J; Guo, Xinyi; Martin, J Andrew; Pacold, Michael E; Jones, Drew R; Boeke, Jef D; Wang, Harris H
Major genomic deletions in independent eukaryotic lineages have led to repeated ancestral loss of biosynthesis pathways for nine of the twenty canonical amino acids1. While the evolutionary forces driving these polyphyletic deletion events are not well understood, the consequence is that extant metazoans are unable to produce nine essential amino acids (EAAs). Previous studies have highlighted that EAA biosynthesis tends to be more energetically costly2,3, raising the possibility that these pathways were lost from organisms with access to abundant EAAs in the environment4,5. It is unclear whether present-day metazoans can reaccept these pathways to resurrect biosynthetic capabilities that were lost long ago or whether evolution has rendered EAA pathways incompatible with metazoan metabolism. Here, we report progress on a large-scale synthetic genomics effort to reestablish EAA biosynthetic functionality in mammalian cells. We designed codon-optimized biosynthesis pathways based on genes mined from Escherichia coli. These pathways were de novo synthesized in 3 kilobase chunks, assembled in yeasto and genomically integrated into a Chinese Hamster Ovary (CHO) cell line. One synthetic pathway produced valine at a sufficient level for cell viability and proliferation, and thus represents a successful example of metazoan EAA biosynthesis restoration. This prototrophic CHO line grows in valine-free medium, and metabolomics using labeled precursors verified de novo biosynthesis of valine. RNA-seq profiling of the valine prototrophic CHO line showed that the synthetic pathway minimally disrupted the cellular transcriptome. Furthermore, valine prototrophic cells exhibited transcriptional signatures associated with rescue from nutritional starvation. 13C-tracing revealed build-up of pathway intermediate 2,3-dihydroxy-3-isovalerate in these cells. Increasing the dosage of downstream ilvD boosted pathway performance and allowed for long-term propagation of second-generation cells in valine-free medium at a consistent doubling time of 3.2 days. This work demonstrates that mammalian metabolism is amenable to restoration of ancient core pathways, paving a path for genome-scale efforts to synthetically restore metabolic functions to the metazoan lineage.
PMID: 36165439
ISSN: 2050-084x
CID: 5334162

Succinate dehydrogenase inversely regulates red cell distribution width and healthy lifespan in chronically hypoxic mice

Baysal, Bora E; Alahmari, Abdulrahman A; Rodrick, Tori C; Tabaczynski, Debra; Curtin, Leslie; Seshadri, Mukund; Jones, Drew R; Sexton, Sandra
Increased red cell distribution width (RDW), which measures erythrocyte volume (MCV) variability (anisocytosis), has been linked to early mortality in many diseases and in older adults through unknown mechanisms. Hypoxic stress has been proposed as a potential mechanism. However, experimental models to investigate the link between increased RDW and reduced survival are lacking. Here, we show that lifelong hypobaric hypoxia (~10% O2) increases erythrocyte numbers, hemoglobin and RDW, while reducing longevity in male mice. Compound heterozygous knockout (chKO) mutations in succinate dehydrogenase (Sdh; mitochondrial complex II) genes Sdhb, Sdhc and Sdhd reduce Sdh subunit protein levels, RDW, and increase healthy lifespan compared to wild-type (WT) mice in chronic hypoxia. RDW-SD, a direct measure of MCV variability, and the standard deviation of MCV (1SD-RDW) show the most statistically significant reductions in Sdh hKO mice. Tissue metabolomic profiling of 147 common metabolites shows the largest increase in succinate with elevated succinate to fumarate and succinate to oxoglutarate (2-ketoglutarate) ratios in Sdh hKO mice. These results demonstrate that mitochondrial complex II level is an underlying determinant of both RDW and healthy lifespan in hypoxia, and suggest that therapeutic targeting of Sdh might reduce high RDW-associated clinical mortality in hypoxic diseases.
PMID: 35881479
ISSN: 2379-3708
CID: 5276352

Multiscale study of the oral and gut environments in children with high- and low-threshold peanut allergy

Zhang, Lingdi; Chun, Yoojin; Ho, Hsi-En; Arditi, Zoe; Lo, Tracy; Sajja, Swathy; Rose, Rebecca; Jones, Drew; Wang, Julie; Sicherer, Scott; Bunyavanich, Supinda
BACKGROUND:The oral and gut microbiomes have each been associated with food allergy status. Within food allergy, they may also influence reaction thresholds. OBJECTIVE:Our aim was to identify oral and gut microbiota associated with reaction thresholds in peanut allergy. METHODS:A total of 59 children aged 4 to 14 years with suspected peanut allergy underwent double-blind, placebo-controlled food challenge to peanut. Those children who reacted at the 300-mg or higher dose of peanut were classified as high-threshold (HT), those who reacted to lower doses were classified as low-threshold (LT), and those children who did not react were classified as not peanut allergic (NPA). Saliva and stool samples collected before challenge underwent DNA isolation followed by 16S rRNA sequencing and short-chain fatty acid measurement. RESULTS:The 59 participants included 38 HT children and 13 LT children. Saliva microbiome α-diversity (Shannon index) was higher in LT children (P = .017). We identified saliva and stool microbiota that distinguished HT children from LT children, including oral Veillonella nakazawae (amplicon sequence variant 1979), which was more abundant in the HT group than in the LT group (false discovery rate [FDR] = 0.025), and gut Bacteroides thetaiotaomicron (amplicon sequence variant 6829), which was less abundant in HT children than in LT children (FDR = 0.039). Comparison with NPA children revealed consistent ordinal trends between these discriminating species and reaction thresholds. Importantly, many of these threshold-associated species were also correlated with short-chain fatty acid levels at the respective body sites, including between oral V nakazawae and oral butyrate (r = 0.57; FDR = 0.049). CONCLUSION/CONCLUSIONS:Findings from this multiscale study raise the possibility of microbial therapeutics to increase reaction thresholds in children with food allergy.
PMID: 35550149
ISSN: 1097-6825
CID: 5231272

Individuals with Metabolic Syndrome Show Altered Fecal Lipidomic Profiles with No Signs of Intestinal Inflammation or Increased Intestinal Permeability

Coleman, Mia J; Espino, Luis M; Lebensohn, Hernan; Zimkute, Marija V; Yaghooti, Negar; Ling, Christina L; Gross, Jessica M; Listwan, Natalia; Cano, Sandra; Garcia, Vanessa; Lovato, Debbie M; Tigert, Susan L; Jones, Drew R; Gullapalli, Rama R; Rakov, Neal E; Torrazza Perez, Euriko G; Castillo, Eliseo F
BACKGROUND:Metabolic Syndrome (MetS) is a clinical diagnosis where patients exhibit three out of the five risk factors: hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, hyperglycemia, elevated blood pressure, or increased abdominal obesity. MetS arises due to dysregulated metabolic pathways that culminate with insulin resistance and put individuals at risk to develop various comorbidities with far-reaching medical consequences such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease. As it stands, the exact pathogenesis of MetS as well as the involvement of the gastrointestinal tract in MetS is not fully understood. Our study aimed to evaluate intestinal health in human subjects with MetS. METHODS:We examined MetS risk factors in individuals through body measurements and clinical and biochemical blood analysis. To evaluate intestinal health, gut inflammation was measured by fecal calprotectin, intestinal permeability through the lactulose-mannitol test, and utilized fecal metabolomics to examine alterations in the host-microbiota gut metabolism. RESULTS:No signs of intestinal inflammation or increased intestinal permeability were observed in the MetS group compared to our control group. However, we found a significant increase in 417 lipid features of the gut lipidome in our MetS cohort. An identified fecal lipid, diacyl-glycerophosphocholine, showed a strong correlation with several MetS risk factors. Although our MetS cohort showed no signs of intestinal inflammation, they presented with increased levels of serum TNFα that also correlated with increasing triglyceride and fecal diacyl-glycerophosphocholine levels and decreasing HDL cholesterol levels. CONCLUSION/CONCLUSIONS:Taken together, our main results show that MetS subjects showed major alterations in fecal lipid profiles suggesting alterations in the intestinal host-microbiota metabolism that may arise before concrete signs of gut inflammation or intestinal permeability become apparent. Lastly, we posit that fecal metabolomics could serve as a non-invasive, accurate screening method for both MetS and NAFLD.
PMID: 35629938
ISSN: 2218-1989
CID: 5229092

The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling

Concepcion, Axel R; Wagner, Larry E 2nd; Zhu, Jingjie; Tao, Anthony Y; Yang, Jun; Khodadadi-Jamayran, Alireza; Wang, Yin-Hu; Liu, Menghan; Rose, Rebecca E; Jones, Drew R; Coetzee, William A; Yule, David I; Feske, Stefan
PMID: 35105987
ISSN: 1529-2908
CID: 5147322

Pilot study evaluating everolimus molecular mechanisms in tuberous sclerosis complex and focal cortical dysplasia

Leitner, Dominique F; Kanshin, Evgeny; Askenazi, Manor; Siu, Yik; Friedman, Daniel; Devore, Sasha; Jones, Drew; Ueberheide, Beatrix; Wisniewski, Thomas; Devinsky, Orrin
BACKGROUND:Tuberous sclerosis complex (TSC) and some focal cortical dysplasias (FCDs) are associated with dysfunctional mTOR signaling, resulting in increased cell growth and ribosomal S6 protein phosphorylation (phospho-S6). mTOR inhibitors can reduce TSC tumor growth and seizure frequency, and preclinical FCD studies indicate seizure suppression. This pilot study evaluated safety of mTOR inhibitor everolimus in treatment resistant (failure of >2 anti-seizure medications) TSC and FCD patients undergoing surgical resection and to assess mTOR signaling and molecular pathways. METHODS AND FINDINGS/RESULTS:We evaluated everolimus in 14 treatment resistant epilepsy patients undergoing surgical resection (4.5 mg/m2 daily for 7 days; n = 4 Active, mean age 18.3 years, range 4-26; n = 10, Control, mean age 13.1, range 3-45). Everolimus was well tolerated. Mean plasma everolimus in Active participants were in target range (12.4 ng/ml). Brain phospho-S6 was similar in Active and Control participants with a lower trend in Active participants, with Ser235/236 1.19-fold (p = 0.67) and Ser240/244 1.15-fold lower (p = 0.66). Histologically, Ser235/236 was 1.56-fold (p = 0.37) and Ser240/244 was 5.55-fold lower (p = 0.22). Brain proteomics identified 11 proteins at <15% false discovery rate associated with coagulation system (p = 1.45x10-9) and acute phase response (p = 1.23x10-6) activation. A weighted gene correlation network analysis (WGCNA) of brain proteomics and phospho-S6 identified 5 significant modules. Higher phospho-S6 correlated negatively with cellular respiration and synaptic transmission and positively with organophosphate metabolic process, nuclear mRNA catabolic process, and neuron ensheathment. Brain metabolomics identified 14 increased features in Active participants, including N-acetylaspartylglutamic acid. Plasma proteomics and cytokine analyses revealed no differences. CONCLUSIONS:Short-term everolimus before epilepsy surgery in TSC and FCD resulted in no adverse events and trending lower mTOR signaling (phospho-S6). Future studies should evaluate implications of our findings, including coagulation system activation and everolimus efficacy in FCD, in larger studies with long-term treatment to better understand molecular and clinical effects. CLINICAL TRIALS REGISTRATION/BACKGROUND:ClinicalTrials.gov NCT02451696.
PMCID:9119437
PMID: 35587487
ISSN: 1932-6203
CID: 5228952

Neurodevelopmental signatures of narcotic and neuropsychiatric risk factors in 3D human-derived forebrain organoids

Notaras, Michael; Lodhi, Aiman; Barrio-Alonso, Estibaliz; Foord, Careen; Rodrick, Tori; Jones, Drew; Fang, Haoyun; Greening, David; Colak, Dilek
It is widely accepted that narcotic use during pregnancy and specific environmental factors (e.g., maternal immune activation and chronic stress) may increase risk of neuropsychiatric illness in offspring. However, little progress has been made in defining human-specific in utero neurodevelopmental pathology due to ethical and technical challenges associated with accessing human prenatal brain tissue. Here we utilized human induced pluripotent stem cells (hiPSCs) to generate reproducible organoids that recapitulate dorsal forebrain development including early corticogenesis. We systemically exposed organoid samples to chemically defined "enviromimetic" compounds to examine the developmental effects of various narcotic and neuropsychiatric-related risk factors within tissue of human origin. In tandem experiments conducted in parallel, we modeled exposure to opiates (μ-opioid agonist endomorphin), cannabinoids (WIN 55,212-2), alcohol (ethanol), smoking (nicotine), chronic stress (human cortisol), and maternal immune activation (human Interleukin-17a; IL17a). Human-derived dorsal forebrain organoids were consequently analyzed via an array of unbiased and high-throughput analytical approaches, including state-of-the-art TMT-16plex liquid chromatography/mass-spectrometry (LC/MS) proteomics, hybrid MS metabolomics, and flow cytometry panels to determine cell-cycle dynamics and rates of cell death. This pipeline subsequently revealed both common and unique proteome, reactome, and metabolome alterations as a consequence of enviromimetic modeling of narcotic use and neuropsychiatric-related risk factors in tissue of human origin. However, of our 6 treatment groups, human-derived organoids treated with the cannabinoid agonist WIN 55,212-2 exhibited the least convergence of all groups. Single-cell analysis revealed that WIN 55,212-2 increased DNA fragmentation, an indicator of apoptosis, in human-derived dorsal forebrain organoids. We subsequently confirmed induction of DNA damage and apoptosis by WIN 55,212-2 within 3D human-derived dorsal forebrain organoids. Lastly, in a BrdU pulse-chase neocortical neurogenesis paradigm, we identified that WIN 55,212-2 was the only enviromimetic treatment to disrupt newborn neuron numbers within human-derived dorsal forebrain organoids. Cumulatively this study serves as both a resource and foundation from which human 3D biologics can be used to resolve the non-genomic effects of neuropsychiatric risk factors under controlled laboratory conditions. While synthetic cannabinoids can differ from naturally occurring compounds in their effects, our data nonetheless suggests that exposure to WIN 55,212-2 elicits neurotoxicity within human-derived developing forebrain tissue. These human-derived data therefore support the long-standing belief that maternal use of cannabinoids may require caution so to avoid any potential neurodevelopmental effects upon developing offspring in utero.
PMID: 34158620
ISSN: 1476-5578
CID: 5030752

Sheath fluid impacts the depletion of cellular metabolites in cells afflicted by sorting induced cellular stress (SICS)

Ryan, Kamilah; Rose, Rebecca E; Jones, Drew R; Lopez, Peter A
Flow cytometrists have long observed a spectrum of cell-type-specific changes ranging from minor functional defects to outright cell destruction after purification of cells using conventional droplet cell sorters. We have described this spectrum of cell perturbations as sorter induced cellular stress, or SICS (Lopez and Hulspas, Cytometry, 2020, 97, 105-106). Despite the potential impact of this issue and ubiquitous anecdotes, little has been reported about this phenomenon in the literature, and the underlying mechanism has been elusive. Inspired by others' observations (Llufrio et al., Redox Biology, 2018, 16, 381-387 and Binek et al., Journal of Proteome Research, 2019, 18, 169-181), we set out to examine SICS at the metabolic level and use this information to propose a working model. Using representative suspension (Jurkat) and adherent (NIH/3T3) cell lines we observed broad and consistent metabolic perturbations after sorting using a high-speed droplet cell sorter. Our results suggest that the SICS metabolic phenotype is a common cell-type-independent manifestation and may be the harbinger of a wide-range of functional defects either directly related to metabolism, or cell stress response pathways. We further demonstrate a proof of concept that a modification to the fluidic environment (complete media used as sheath fluid) in a droplet cell sorter can largely rescue the intracellular markers of SICS, and that this rescue is not due to a contribution of metabolites found in media. Future studies will focus on characterizing the potential electro-physical mechanisms inherent to the droplet cell sorting process to determine the major contributors to the SICS mechanism.
PMID: 34031988
ISSN: 1552-4930
CID: 4888802