Try a new search

Format these results:

Searched for:

person:knollf01

in-biosketch:yes

Total Results:

105


Inverse GANs for Accelerated MRI Reconstruction [Meeting Abstract]

Narnhofer, Dominik; Hammernik, Kerstin; Knoll, Florian; Pock, Thomas
ISI:000511301800033
ISSN: 0277-786x
CID: 4533962

Deep learning methods for parallel magnetic resonance image reconstruction [PrePrint]

Knoll, Florian; Hammernik, Kerstin; Zhang, Chi; Moeller, Steen; Pock, Thomas; Sodickson, Daniel K; Akcakaya, Mehmet
Following the success of deep learning in a wide range of applications, neural network-based machine learning techniques have received interest as a means of accelerating magnetic resonance imaging (MRI). A number of ideas inspired by deep learning techniques from computer vision and image processing have been successfully applied to non-linear image reconstruction in the spirit of compressed sensing for both low dose computed tomography and accelerated MRI. The additional integration of multi-coil information to recover missing k-space lines in the MRI reconstruction process, is still studied less frequently, even though it is the de-facto standard for currently used accelerated MR acquisitions. This manuscript provides an overview of the recent machine learning approaches that have been proposed specifically for improving parallel imaging. A general background introduction to parallel MRI is given that is structured around the classical view of image space and k-space based methods. Both linear and non-linear methods are covered, followed by a discussion of recent efforts to further improve parallel imaging using machine learning, and specifically using artificial neural networks. Image-domain based techniques that introduce improved regularizers are covered as well as k-space based methods, where the focus is on better interpolation strategies using neural networks. Issues and open problems are discussed as well as recent efforts for producing open datasets and benchmarks for the community.
ORIGINAL:0014687
ISSN: 2331-8422
CID: 4534322

Training a Neural Network for Gibbs and Noise Removal in Diffusion MRI [PrePrint]

Muckley, Matthew J; Ades-Aron, Benjamin; Papaioannou, Antonios; Lemberskiy, Gregory; Solomon, Eddy; Lui, Yvonne W; Sodickson, Daniel K; Fieremans, Els; Novikov, Dmitry S; Knoll, Florian
We develop and evaluate a neural network-based method for Gibbs artifact and noise removal. A convolutional neural network (CNN) was designed for artifact removal in diffusion-weighted imaging data. Two implementations were considered: one for magnitude images and one for complex images. Both models were based on the same encoder-decoder structure and were trained by simulating MRI acquisitions on synthetic non-MRI images. Both machine learning methods were able to mitigate artifacts in diffusion-weighted images and diffusion parameter maps. The CNN for complex images was also able to reduce artifacts in partial Fourier acquisitions. The proposed CNNs extend the ability of artifact correction in diffusion MRI. The machine learning method described here can be applied on each imaging slice independently, allowing it to be used flexibly in clinical applications
ORIGINAL:0014689
ISSN: 2331-8422
CID: 4534342

Machine learning for medical image reconstruction : second international workshop, MLMIR 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019 : proceedings

Knoll, Florian
Cham : Springer [2019]
Extent: ix, 266 p.
ISBN: 3030338428
CID: 4535222

Large-scale classification of breast MRI exams using deep convolutional networks [Meeting Abstract]

Gong, Shizhan; Muckley, Matthew; Wu, Nan; Makino, Taro; Kim, S. Gene; Heacock, Laura; Moy, Linda; Knoll, Florian; Geras, Krzysztof J
ORIGINAL:0014731
ISSN: 1049-5258
CID: 4668952

Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions [Meeting Abstract]

Johnson, Patricia M.; Muckley, Matthew J.; Bruno, Mary; Kobler, Erich; Hammernik, Kerstin; Pock, Thomas; Knoll, Florian
ISI:000582481700007
ISSN: 0302-9743
CID: 4688672

Multicompartment Magnetic Resonance Fingerprinting

Tang, Sunli; Fernandez-Granda, Carlos; Lannuzel, Sylvain; Bernstein, Brett; Lattanzi, Riccardo; Cloos, Martijn; Knoll, Florian; Assländer, Jakob
Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spin- relaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects intravoxel structure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartment MRF model that accounts for the presence of multiple tissues per voxel. The model is fit to the data by iteratively solving a sparse linear inverse problem at each voxel, in order to express the measured magnetization signal as a linear combination of a few elements in a precomputed fingerprint dictionary. Thresholding-based methods commonly used for sparse recovery and compressed sensing do not perform well in this setting due to the high local coherence of the dictionary. Instead, we solve this challenging sparse-recovery problem by applying reweighted-𝓁1-norm regularization, implemented using an efficient interior-point method. The proposed approach is validated with simulated data at different noise levels and undersampling factors, as well as with a controlled phantom-imaging experiment on a clinical magnetic-resonance system.
PMCID:6415771
PMID: 30880863
ISSN: 0266-5611
CID: 3733672

Coupled regularization with multiple data discrepancies

Holler, Martin; Huber, Richard; Knoll, Florian
We consider a class of regularization methods for inverse problems where a coupled regularization is employed for the simultaneous reconstruction of data from multiple sources. Applications for such a setting can be found in multi-spectral or multimodality inverse problems, but also in inverse problems with dynamic data. We consider this setting in a rather general framework and derive stability and convergence results, including convergence rates. In particular, we show how parameter choice strategies adapted to the interplay of different data channels allow to improve upon convergence rates that would be obtained by treating all channels equally. Motivated by concrete applications, our results are obtained under rather general assumptions that allow to include the Kullback-Leibler divergence as data discrepancy term. To simplify their application to concrete settings, we further elaborate several practically relevant special cases in detail. To complement the analytical results, we also provide an algorithmic framework and source code that allows to solve a class of jointly regularized inverse problems with any number of data discrepancies. As concrete applications, we show numerical results for multi-contrast MR and joint MR-PET reconstruction.
PMCID:6344056
PMID: 30686851
ISSN: 0266-5611
CID: 3659342

Learning a variational network for reconstruction of accelerated MRI data

Hammernik, Kerstin; Klatzer, Teresa; Kobler, Erich; Recht, Michael P; Sodickson, Daniel K; Pock, Thomas; Knoll, Florian
PURPOSE: To allow fast and high-quality reconstruction of clinical accelerated multi-coil MR data by learning a variational network that combines the mathematical structure of variational models with deep learning. THEORY AND METHODS: Generalized compressed sensing reconstruction formulated as a variational model is embedded in an unrolled gradient descent scheme. All parameters of this formulation, including the prior model defined by filter kernels and activation functions as well as the data term weights, are learned during an offline training procedure. The learned model can then be applied online to previously unseen data. RESULTS: The variational network approach is evaluated on a clinical knee imaging protocol for different acceleration factors and sampling patterns using retrospectively and prospectively undersampled data. The variational network reconstructions outperform standard reconstruction algorithms, verified by quantitative error measures and a clinical reader study for regular sampling and acceleration factor 4. CONCLUSION: Variational network reconstructions preserve the natural appearance of MR images as well as pathologies that were not included in the training data set. Due to its high computational performance, that is, reconstruction time of 193 ms on a single graphics card, and the omission of parameter tuning once the network is trained, this new approach to image reconstruction can easily be integrated into clinical workflow. Magn Reson Med, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine.
PMCID:5902683
PMID: 29115689
ISSN: 1522-2594
CID: 2773032

Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting

Lattanzi, Riccardo; Zhang, Bei; Knoll, Florian; Assländer, Jakob; Cloos, Martijn A
PURPOSE/OBJECTIVE:Magnetic Resonance Fingerprinting reconstructions can become computationally intractable with multiple transmit channels, if the B1+ phases are included in the dictionary. We describe a general method that allows to omit the transmit phases. We show that this enables straightforward implementation of dictionary compression to further reduce the problem dimensionality. METHODS:We merged the raw data of each RF source into a single k-space dataset, extracted the transceiver phases from the corresponding reconstructed images and used them to unwind the phase in each time frame. All phase-unwound time frames were combined in a single set before performing SVD-based compression. We conducted synthetic, phantom and in-vivo experiments to demonstrate the feasibility of SVD-based compression in the case of two-channel transmission. RESULTS:Unwinding the phases before SVD-based compression yielded artifact-free parameter maps. For fully sampled acquisitions, parameters were accurate with as few as 6 compressed time frames. SVD-based compression performed well in-vivo with highly under-sampled acquisitions using 16 compressed time frames, which reduced reconstruction time from 750 to 25min. CONCLUSION/CONCLUSIONS:Our method reduces the dimensions of the dictionary atoms and enables to implement any fingerprint compression strategy in the case of multiple transmit channels.
PMCID:5935578
PMID: 29278766
ISSN: 1873-5894
CID: 2895922