Try a new search

Format these results:

Searched for:



Total Results:


In vivo-activated CD103+CD4+ regulatory T cells ameliorate ongoing chronic graft-versus-host disease

Zhao, Dongchang; Zhang, Chunyan; Yi, Tangsheng; Lin, Chia-Lei; Todorov, Ivan; Kandeel, Fouad; Forman, Stephen; Zeng, Defu
CD103 (alphaEbeta7) has been shown to be an excellent marker for identifying in vivo-activated FoxP3(+)CD4(+) regulatory T (Treg) cells. It is unknown whether reinfusion of in vivo-activated donor-type CD103(+) Treg cells from recipient can ameliorate ongoing chronic graft-versus-host disease (GVHD). Here, we showed that, in a chronic GVHD model of DBA/2 (H-2(d)) donor to BALB/c (H-2(d)) recipient, donor-type CD103(+) Treg cells from recipients were much more potent than CD25(hi) natural Treg cells from donors in reversing clinical signs of GVHD and tissue damage. Furthermore, in contrast to CD25(hi) natural Treg cells, CD103(+) Treg cells expressed high levels of CCR5 but low levels of CD62L and directly migrated to GVHD target tissues. In addition, the CD103(+) Treg cells strongly suppressed donor CD4(+) T-cell proliferation; they also induced apoptosis of in vivo-activated CD4(+) T and B cells and significantly reduced pathogenic T and B cells in GVHD target tissues. These results indicate that CD103(+) Treg cells from chronic GVHD recipients are functional, and reinfusion of the CD103(+) Treg cells can shift the balance between Treg cells and pathogenic T cells in chronic GVHD recipients and ameliorate ongoing disease.
PMID: 18550852
ISSN: 1528-0020
CID: 2264442

HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen

Li, Nainong; Zhao, Dongchang; Kirschbaum, Mark; Zhang, Chunyan; Lin, Chia-Lei; Todorov, Ivan; Kandeel, Fouad; Forman, Stephen; Zeng, Defu
In allogeneic hematopoietic cell transplantation (HCT), donor T cell-mediated graft versus host leukemia (GVL) and graft versus autoimmune (GVA) activity play critical roles in treatment of hematological malignancies and refractory autoimmune diseases. However, graft versus host disease (GVHD), which sometimes can be fatal, remains a major obstacle in classical HCT, where recipients are conditioned with total body irradiation or high-dose chemotherapy. We previously reported that anti-CD3 conditioning allows donor CD8(+) T cells to facilitate engraftment and mediate GVL without causing GVHD. However, the clinical application of this radiation-free and GVHD preventative conditioning regimen is hindered by the cytokine storm syndrome triggered by anti-CD3 and the high-dose donor bone marrow (BM) cells required for induction of chimerism. Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are known to induce apoptosis of cancer cells and reduce production of proinflammatory cytokines by nonmalignant cells. Here, we report that SAHA inhibits the proliferative and cytotoxic activity of anti-CD3-activated T cells. Administration of low-dose SAHA reduces cytokine production and ameliorates the cytokine storm syndrome triggered by anti-CD3. Conditioning with anti-CD3 and SAHA allows induction of chimerism with lower doses of donor BM cells in old nonautoimmune and autoimmune lupus mice. In addition, conditioning with anti-CD3 and SAHA allows donor CD8(+) T cell-mediated GVA activity to reverse lupus glomerulonephritis without causing GVHD. These results indicate that conditioning with anti-CD3 and HDAC inhibitors represent a radiation-free and GVHD-preventative regimen with clinical application potential.
PMID: 18347343
ISSN: 1091-6490
CID: 2264452

Elimination of insulitis and augmentation of islet beta cell regeneration via induction of chimerism in overtly diabetic NOD mice

Zhang, Chunyan; Todorov, Ivan; Lin, Chia-Lei; Atkinson, Mark; Kandeel, Fouad; Forman, Stephen; Zeng, Defu
Type 1 diabetes in both humans and nonobese diabetic (NOD) mice results from autoreactive T cell destruction of insulin-producing beta cells. Cure of type 1 diabetes may require both reversal of autoimmunity and regeneration of beta cells. Induction of chimerism via allogeneic hematopoietic cell transplantation has been shown to reestablish tolerance in both prediabetic and diabetic NOD mice. However, it is unclear whether this therapy augments beta cell regeneration. Furthermore, this procedure usually requires total body irradiation conditioning of recipients. The toxicity of total body irradiation conditioning and potential for graft-versus-host disease (GVHD) limit the application of allogeneic hematopoietic cell transplantation for treating type 1 diabetes. Here we report that injection of donor bone marrow and CD4+ T cell-depleted spleen cells induced chimerism without causing GVHD in overtly diabetic NOD mice conditioned with anti-CD3/CD8 and that induction of chimerism in new-onset diabetic NOD mice led to elimination of insulitis, regeneration of host beta cells, and reversal of hyperglycemia. Therefore, this radiation-free GVHD preventive approach for induction of chimerism may represent a viable means for reversing type 1 diabetes.
PMID: 17267595
ISSN: 0027-8424
CID: 2264462

Donor CD8+ T cells mediate graft-versus-leukemia activity without clinical signs of graft-versus-host disease in recipients conditioned with anti-CD3 monoclonal antibody

Zhang, Chunyan; Lou, Jingwei; Li, Nainong; Todorov, Ivan; Lin, Chia-Lei; Cao, Yu-An; Contag, Christopher H; Kandeel, Fouad; Forman, Stephen; Zeng, Defu
Donor CD8(+) T cells play a critical role in mediating graft-vs-leukemia (GVL) activity, but also induce graft-vs-host disease (GVHD) in recipients conditioned with total body irradiation (TBI). In this study, we report that injections of donor C57BL/6 (H-2(b)) or FVB/N (H-2(q)) CD8(+) T with bone marrow cells induced chimerism and eliminated BCL1 leukemia/lymphoma cells without clinical signs of GVHD in anti-CD3-conditioned BALB/c (H-2(d)) recipients, but induced lethal GVHD in TBI-conditioned recipients. Using in vivo and ex vivo bioluminescent imaging, we observed that donor CD8(+) T cells expanded rapidly and infiltrated GVHD target tissues in TBI-conditioned recipients, but donor CD8(+) T cell expansion in anti-CD3-conditioned recipients was confined to lymphohematological tissues. This confinement was associated with lack of up-regulated expression of alpha(4)beta(7) integrin and chemokine receptors (i.e., CXCR3) on donor CD8(+) T cells. In addition, donor CD8(+) T cells in anti-CD3-conditioned recipients were rendered unresponsive, anergic, Foxp3(+), or type II cytotoxic T phenotype. Those donor CD8(+) T cells showed strong suppressive activity in vitro and mediated GVL activity without clinical signs of GVHD in TBI-conditioned secondary recipients. These results indicate that anti-CD3 conditioning separates GVL activity from GVHD via confining donor CD8(+) T cell expansion to host lymphohemological tissues as well as tolerizing them in the host.
PMID: 17202345
ISSN: 0022-1767
CID: 2264472