Searched for: person:posser01
in-biosketch:yes
Glucose limitation protects cancer cells from apoptosis induced by pyrimidine restriction and replication inhibition
Nam, Minwoo; Xia, Wenxin; Mir, Abdul Hannan; Jerrett, Alexandra; Spinelli, Jessica B; Huang, Tony T; Possemato, Richard
Cancer cells often experience nutrient-limiting conditions because of their robust proliferation and inadequate tumour vasculature, which results in metabolic adaptation to sustain proliferation. Most cancer cells rapidly consume glucose, which is severely reduced in the nutrient-scarce tumour microenvironment. In CRISPR-based genetic screens to identify metabolic pathways influenced by glucose restriction, we find that tumour-relevant glucose concentrations (low glucose) protect cancer cells from inhibition of de novo pyrimidine biosynthesis, a pathway that is frequently targeted by chemotherapy. We identify two mechanisms to explain this result, which is observed broadly across cancer types. First, low glucose limits uridine-5-diphosphate-glucose synthesis, preserving pyrimidine nucleotide availability and thereby prolonging the time to replication fork stalling. Second, low glucose directly modulates apoptosis downstream of replication fork stalling by suppressing BAK activation and subsequent cytochrome c release, key events that activate caspase-9-dependent mitochondrial apoptosis. These results indicate that the low glucose levels frequently observed in tumours may limit the efficacy of specific chemotherapeutic agents, highlighting the importance of considering the effects of the tumour nutrient environment on cancer therapy.
PMID: 39592843
ISSN: 2522-5812
CID: 5757802
Allosteric regulation of CAD modulates de novo pyrimidine synthesis during the cell cycle
Shin, Jong; Mir, Hannan; Khurram, Maaz A; Fujihara, Kenji M; Dynlacht, Brian D; Cardozo, Timothy J; Possemato, Richard
Metabolism is a fundamental cellular process that is coordinated with cell cycle progression. Despite this association, a mechanistic understanding of cell cycle phase-dependent metabolic pathway regulation remains elusive. Here we report the mechanism by which human de novo pyrimidine biosynthesis is allosterically regulated during the cell cycle. Combining traditional synchronization methods and metabolomics, we characterize metabolites by their accumulation pattern during cell cycle phases and identify cell cycle phase-dependent regulation of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase (CAD), the first, rate-limiting enzyme in de novo pyrimidine biosynthesis. Through systematic mutational scanning and structural modelling, we find allostery as a major regulatory mechanism that controls the activity change of CAD during the cell cycle. Specifically, we report evidence of two Animalia-specific loops in the CAD allosteric domain that involve sensing and binding of uridine 5'-triphosphate, a CAD allosteric inhibitor. Based on homology with a mitochondrial carbamoyl-phosphate synthetase homologue, we identify a critical role for a signal transmission loop in regulating the formation of a substrate channel, thereby controlling CAD activity.
PMID: 36747088
ISSN: 2522-5812
CID: 5422782
Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5
Terzi, Erdem M; Sviderskiy, Vladislav O; Alvarez, Samantha W; Whiten, Gabrielle C; Possemato, Richard
Intracellular iron levels are strictly regulated to support homeostasis and avoid iron-mediated ROS production. Loss of iron-sulfur cluster (ISC) synthesis can increase iron loading and promote cell death by ferroptosis. Iron-responsive element-binding proteins IRP1 and IRP2 posttranscriptionally regulate iron homeostasis. IRP1 binding to target mRNAs is competitively regulated by ISC occupancy. However, IRP2 is principally thought to be regulated at the protein level via E3 ubiquitin ligase FBXL5-mediated degradation. Here, we show that ISC synthesis suppression can activate IRP2 and promote ferroptosis sensitivity via a previously unidentified mechanism. At tissue-level O2 concentrations, ISC deficiency enhances IRP2 binding to target mRNAs independent of IRP1, FBXL5, and changes in IRP2 protein level. Deletion of both IRP1 and IRP2 abolishes the iron-starvation response, preventing its activation by ISC synthesis inhibition. These findings will inform strategies to manipulate ferroptosis sensitivity and help illuminate the mechanism underlying ISC biosynthesis disorders, such as Friedreich's ataxia.
PMID: 34039609
ISSN: 2375-2548
CID: 4888832
Hyperactive CDK2 Activity in Basal-like Breast Cancer Imposes a Genome Integrity Liability that Can Be Exploited by Targeting DNA Polymerase ε
Sviderskiy, Vladislav O; Blumenberg, Lili; Gorodetsky, Elizabeth; Karakousi, Triantafyllia R; Hirsh, Nicole; Alvarez, Samantha W; Terzi, Erdem M; Kaparos, Efiyenia; Whiten, Gabrielle C; Ssebyala, Shakirah; Tonzi, Peter; Mir, Hannan; Neel, Benjamin G; Huang, Tony T; Adams, Sylvia; Ruggles, Kelly V; Possemato, Richard
Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype. In BLBC cells, POLE suppression leads to replication fork stalling, DNA damage, and a senescence-like state or cell death. In contrast, luminal breast cancer and non-transformed mammary cells maintain viability upon POLE suppression but become dependent upon an ATR/CHK1/CDC25A/CDK2 DNA damage response axis. We find that CDK1/2 targets exhibit hyperphosphorylation selectively in BLBC tumors, indicating that CDK2 hyperactivity is a genome integrity vulnerability exploitable by targeting POLE.
PMID: 33152268
ISSN: 1097-4164
CID: 4664322
NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis
Alvarez, Samantha W; Sviderskiy, Vladislav O; Terzi, Erdem M; Papagiannakopoulos, Thales; Moreira, Andre L; Adams, Sylvia; Sabatini, David M; Birsoy, Kivanc; Possemato, Richard
Environmental nutrient levels impact cancer cell metabolism, resulting in context-dependent gene essentiality. Here, using loss-of-function screening based on RNA interference, we show that environmental oxygen levels are a major driver of differential essentiality between in vitro model systems and in vivo tumours. Above the 3-8% oxygen concentration typical of most tissues, we find that cancer cells depend on high levels of the iron-sulfur cluster biosynthetic enzyme NFS1. Mammary or subcutaneous tumours grow despite suppression of NFS1, whereas metastatic or primary lung tumours do not. Consistent with a role in surviving the high oxygen environment of incipient lung tumours, NFS1 lies in a region of genomic amplification present in lung adenocarcinoma and is most highly expressed in well-differentiated adenocarcinomas. NFS1 activity is particularly important for maintaining the iron-sulfur co-factors present in multiple cell-essential proteins upon exposure to oxygen compared to other forms of oxidative damage. Furthermore, insufficient iron-sulfur cluster maintenance robustly activates the iron-starvation response and, in combination with inhibition of glutathione biosynthesis, triggers ferroptosis, a non-apoptotic form of cell death. Suppression of NFS1 cooperates with inhibition of cysteine transport to trigger ferroptosis in vitro and slow tumour growth. Therefore, lung adenocarcinomas select for expression of a pathway that confers resistance to high oxygen tension and protects cells from undergoing ferroptosis in response to oxidative damage.
PMCID:5808442
PMID: 29168506
ISSN: 1476-4687
CID: 2792182
Serine Catabolism by SHMT2 Is Required for Proper Mitochondrial Translation Initiation and Maintenance of Formylmethionyl-tRNAs
Minton, Denise R; Nam, Minwoo; McLaughlin, Daniel J; Shin, Jong; Bayraktar, Erol C; Alvarez, Samantha W; Sviderskiy, Vladislav O; Papagiannakopoulos, Thales; Sabatini, David M; Birsoy, Kıvanç; Possemato, Richard
Upon glucose restriction, eukaryotic cells upregulate oxidative metabolism to maintain homeostasis. Using genetic screens, we find that the mitochondrial serine hydroxymethyltransferase (SHMT2) is required for robust mitochondrial oxygen consumption and low glucose proliferation. SHMT2 catalyzes the first step in mitochondrial one-carbon metabolism, which, particularly in proliferating cells, produces tetrahydrofolate (THF)-conjugated one-carbon units used in cytoplasmic reactions despite the presence of a parallel cytoplasmic pathway. Impairing cytoplasmic one-carbon metabolism or blocking efflux of one-carbon units from mitochondria does not phenocopy SHMT2 loss, indicating that a mitochondrial THF cofactor is responsible for the observed phenotype. The enzyme MTFMT utilizes one such cofactor, 10-formyl THF, producing formylmethionyl-tRNAs, specialized initiator tRNAs necessary for proper translation of mitochondrially encoded proteins. Accordingly, SHMT2 null cells specifically fail to maintain formylmethionyl-tRNA pools and mitochondrially encoded proteins, phenotypes similar to those observed in MTFMT-deficient patients. These findings provide a rationale for maintaining a compartmentalized one-carbon pathway in mitochondria.
PMCID:5819360
PMID: 29452640
ISSN: 1097-4164
CID: 2958432
Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
Possemato, Richard; Marks, Kevin M; Shaul, Yoav D; Pacold, Michael E; Kim, Dohoon; Birsoy, Kivanc; Sethumadhavan, Shalini; Woo, Hin-Koon; Jang, Hyun G; Jha, Abhishek K; Chen, Walter W; Barrett, Francesca G; Stransky, Nicolas; Tsun, Zhi-Yang; Cowley, Glenn S; Barretina, Jordi; Kalaany, Nada Y; Hsu, Peggy P; Ottina, Kathleen; Chan, Albert M; Yuan, Bingbing; Garraway, Levi A; Root, David E; Mino-Kenudson, Mari; Brachtel, Elena F; Driggers, Edward M; Sabatini, David M
Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of alpha-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.
PMCID:3353325
PMID: 21760589
ISSN: 0028-0836
CID: 1086622
Iron, Copper, and Selenium: Cancer's Thing for Redox Bling
Terzi, Erdem M; Possemato, Richard
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
PMCID:10982729
PMID: 37932129
ISSN: 2157-1422
CID: 5655432
Metabolic profiling of adult and pediatric gliomas reveals enriched glucose availability in pediatric gliomas and increased fatty acid oxidation in adult gliomas
Sviderskiy, Vladislav O; Vasudevaraja, Varshini; Dubois, Luiz Gustavo; Stafford, James; Liu, Elisa K; Serrano, Jonathan; Possemato, Richard; Snuderl, Matija
Gliomas are the most common primary brain tumors and a major source of mortality and morbidity in adults and children. Recent genomic studies have identified multiple molecular subtypes; however metabolic characterization of these tumors has thus far been limited. We performed metabolic profiling of 114 adult and pediatric primary gliomas and integrated metabolomic data with transcriptomics and DNA methylation classes. We identified that pediatric tumors have higher levels of glucose and reduced lactate compared to adult tumors regardless of underlying genetics or grade, suggesting differences in availability of glucose and/or utilization of glucose for downstream pathways. Differences in glucose utilization in pediatric gliomas may be facilitated through overexpression of SLC2A4, which encodes the insulin-stimulated glucose transporter GLUT4. Transcriptomic comparison of adult and pediatric tumors suggests that adult tumors may have limited access to glucose and experience more hypoxia, which is supported by enrichment of lactate, 2-hydroxyglutarate (2-HG), even in isocitrate dehydrogenase (IDH) wild-type tumors, and 3-hydroxybutyrate, a ketone body that is produced by oxidation of fatty acids and ketogenic amino acids during periods of glucose scarcity. Our data support adult tumors relying more on fatty acid oxidation, as they have an abundance of acyl carnitines compared to pediatric tumors and have significant enrichment of transcripts needed for oxidative phosphorylation. Our findings suggest striking differences exist in the metabolism of pediatric and adult gliomas, which can provide new insight into metabolic vulnerabilities for therapy.
PMCID:11909955
PMID: 40087788
ISSN: 2051-5960
CID: 5812752
Acute inhibition of iron-sulfur cluster biosynthesis disrupts metabolic flexibility in mice
Molenaars, Marte; Mir, Hannan; Alvarez, Samantha W; Arivazhagan, Lakshmi; Rosselot, Carolina; Zhan, Di; Park, Christopher Y; Garcia-Ocana, Adolfo; Schmidt, Ann Marie; Possemato, Richard
UNLABELLED:Iron-sulfur clusters (ISCs) are cell-essential cofactors present in ∼60 proteins including subunits of OXPHOS complexes I-III, DNA polymerases, and iron-sensing proteins. Dysfunctions in ISC biosynthesis are associated with anemias, neurodegenerative disorders, and metabolic diseases. To assess consequences of acute ISC inhibition in a whole body setting, we developed a mouse model in which key ISC biosynthetic enzyme NFS1 can be acutely and reversibly suppressed. Contrary to in vitro ISC inhibition and pharmacological OXPHOS suppression, global NFS1 inhibition rapidly enhances lipid utilization and decreases adiposity without affecting caloric intake and physical activity. ISC proteins decrease, including key proteins involved in OXPHOS (SDHB), lipoic acid synthesis (LIAS), and insulin mRNA processing (CDKAL1), causing acute metabolic inflexibility. Age-related metabolic changes decelerate loss of adiposity substantially prolonged survival of mice with NFS1 inhibition. Thus, the observation that ISC metabolism impacts organismal fuel choice will aid in understanding the mechanisms underlying ISC diseases with increased risk for diabetes. HIGHLIGHTS/UNASSIGNED:Acute ISC inhibition leads to rapid loss of adiposity in miceMulti-metabolic pathway disruption upon ISC deficiency blocks energy storageNfs1 inhibition induces glucose dyshomeostasis due to ISC deficiency in β-cellsEnergy distress caused by inhibition of ISC synthesis is attenuated in aged mice.
PMCID:11370322
PMID: 39229169
ISSN: 2692-8205
CID: 5757792