Try a new search

Format these results:

Searched for:

person:raabev01 or eckhab01 or mullim04 or weises06 or shopsb01

active:yes

exclude-minors:true

Total Results:

294


Selective adaptation of SARS-CoV-2 Omicron under booster vaccine pressure: a multicentre observational study

Duerr, Ralf; Dimartino, Dacia; Marier, Christian; Zappile, Paul; Wang, Guiqing; François, Fritz; Ortigoza, Mila B; Iturrate, Eduardo; Samanovic, Marie I; Mulligan, Mark J; Heguy, Adriana
BACKGROUND:High rates of vaccination and natural infection drive immunity and redirect selective viral adaptation. Updated boosters are installed to cope with drifted viruses, yet data on adaptive evolution under increasing immune pressure in a real-world situation are lacking. METHODS:Cross-sectional study to characterise SARS-CoV-2 mutational dynamics and selective adaptation over >1 year in relation to vaccine status, viral phylogenetics, and associated clinical and demographic variables. FINDINGS/RESULTS:The study of >5400 SARS-CoV-2 infections between July 2021 and August 2022 in metropolitan New York portrayed the evolutionary transition from Delta to Omicron BA.1-BA.5 variants. Booster vaccinations were implemented during the Delta wave, yet booster breakthrough infections and SARS-CoV-2 re-infections were almost exclusive to Omicron. In adjusted logistic regression analyses, BA.1, BA.2, and BA.5 had a significant growth advantage over co-occurring lineages in the boosted population, unlike BA.2.12.1 or BA.4. Selection pressure by booster shots translated into diffuse adaptive evolution in Delta spike, contrasting with strong, receptor-binding motif-focused adaptive evolution in BA.2-BA.5 spike (Fisher Exact tests; non-synonymous/synonymous mutation rates per site). Convergent evolution has become common in Omicron, engaging spike positions crucial for immune escape, receptor binding, or cleavage. INTERPRETATION/CONCLUSIONS:Booster shots are required to cope with gaps in immunity. Their discriminative immune pressure contributes to their effectiveness but also requires monitoring of selective viral adaptation processes. Omicron BA.2 and BA.5 had a selective advantage under booster vaccination pressure, contributing to the evolution of BA.2 and BA.5 sublineages and recombinant forms that predominate in 2023. FUNDING/BACKGROUND:The study was supported by NYU institutional funds and partly by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.
PMCID:10623172
PMID: 37866115
ISSN: 2352-3964
CID: 5609742

Priorities and Progress in Gram-positive Bacterial Infection Research by the Antibacterial Resistance Leadership Group: A Narrative Review

Doernberg, Sarah B; Arias, Cesar A; Altman, Deena R; Babiker, Ahmed; Boucher, Helen W; Creech, C Buddy; Cosgrove, Sara E; Evans, Scott R; Fowler, Vance G; Fritz, Stephanie A; Hamasaki, Toshimitsu; Kelly, Brendan J; Leal, Sixto M; Liu, Catherine; Lodise, Thomas P; Miller, Loren G; Munita, Jose M; Murray, Barbara E; Pettigrew, Melinda M; Ruffin, Felicia; Scheetz, Marc H; Shopsin, Bo; Tran, Truc T; Turner, Nicholas A; Williams, Derek J; Zaharoff, Smitha; Holland, Thomas L; ,
The Antibacterial Resistance Leadership Group (ARLG) has prioritized infections caused by gram-positive bacteria as one of its core areas of emphasis. The ARLG Gram-positive Committee has focused on studies responding to 3 main identified research priorities: (1) investigation of strategies or therapies for infections predominantly caused by gram-positive bacteria, (2) evaluation of the efficacy of novel agents for infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci, and (3) optimization of dosing and duration of antimicrobial agents for gram-positive infections. Herein, we summarize ARLG accomplishments in gram-positive bacterial infection research, including studies aiming to (1) inform optimal vancomycin dosing, (2) determine the role of dalbavancin in MRSA bloodstream infection, (3) characterize enterococcal bloodstream infections, (4) demonstrate the benefits of short-course therapy for pediatric community-acquired pneumonia, (5) develop quality of life measures for use in clinical trials, and (6) advance understanding of the microbiome. Future studies will incorporate innovative methodologies with a focus on interventional clinical trials that have the potential to change clinical practice for difficult-to-treat infections, such as MRSA bloodstream infections.
PMCID:10578051
PMID: 37843115
ISSN: 1537-6591
CID: 5609602

Multimodal single-cell datasets characterize antigen-specific CD8+ T cells across SARS-CoV-2 vaccination and infection

Zhang, Bingjie; Upadhyay, Rabi; Hao, Yuhan; Samanovic, Marie I; Herati, Ramin S; Blair, John D; Axelrad, Jordan; Mulligan, Mark J; Littman, Dan R; Satija, Rahul
The immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we used multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after immunization with the mRNA vaccine BNT162b2. Our data indicated distinct subpopulations of CD8+ T cells, which reliably appeared 28 days after prime vaccination. Using a suite of cross-modality integration tools, we defined their transcriptome, accessible chromatin landscape and immunophenotype, and we identified unique biomarkers within each modality. We further showed that this vaccine-induced population was SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we identified these CD8+ T cell populations in scRNA-seq datasets from COVID-19 patients and found that their relative frequency and differentiation outcomes were predictive of subsequent clinical outcomes.
PMID: 37735591
ISSN: 1529-2916
CID: 5606242

Immune response, phenotyping and molecular graft surveillance in kidney transplant recipients following severe acute respiratory syndrome coronavirus 2 vaccination

Ali, Nicole M; Herati, Ramin S; Mehta, Sapna A; Leonard, Jeanette; Miles, Jake; Lonze, Bonnie E; DiMaggio, Charles; Tatapudi, Vasishta S; Stewart, Zoe A; Alnazari, Nasser; Neumann, Henry J; Thomas, Jeffrey; Cartiera, Katarzyna; Weldon, Elaina; Michael, Jennifer; Hickson, Christopher; Whiteson, Harris; Khalil, Karen; Stern, Jeffrey M; Allen, Joseph R; Tuen, Michael; Gray-Gaillard, Sophie L; Solis, Sabrina M; Samanovic, Marie I; Mulligan, Mark J; Montgomery, Robert A
BACKGROUND:Understanding immunogenicity and alloimmune risk following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in kidney transplant recipients is imperative to understanding the correlates of protection and to inform clinical guidelines. METHODS:We studied 50 kidney transplant recipients following SARS-CoV-2 vaccination and quantified their anti-spike protein antibody, donor-derived cell-free DNA (dd-cfDNA), gene expression profiling (GEP), and alloantibody formation. RESULTS:Participants were stratified using nucleocapsid testing as either SARS-CoV-2-naïve or experienced prior to vaccination. One of 34 (3%) SARS-CoV-2 naïve participants developed anti-spike protein antibodies. In contrast, the odds ratio for the association of a prior history of SARS-CoV-2 infection with vaccine response was 18.3 (95% confidence interval 3.2, 105.0, p < 0.01). Pre- and post-vaccination levels did not change for median dd-cfDNA (0.23% vs. 0.21% respectively, p = 0.13), GEP scores (9.85 vs. 10.4 respectively, p = 0.45), calculated panel reactive antibody, de-novo donor specific antibody status, or estimated glomerular filtration rate. CONCLUSIONS:SARS-CoV-2 vaccines do not appear to trigger alloimmunity in kidney transplant recipients. The degree of vaccine immunogenicity was associated most strongly with a prior history of SARS-CoV-2 infection.
PMID: 37707287
ISSN: 1399-3062
CID: 5593762

Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization

Jang, Kyung Ku; Heaney, Thomas; London, Mariya; Ding, Yi; Putzel, Gregory; Yeung, Frank; Ercelen, Defne; Chen, Ying-Han; Axelrad, Jordan; Gurunathan, Sakteesh; Zhou, Chaoting; Podkowik, Magdalena; Arguelles, Natalia; Srivastava, Anusha; Shopsin, Bo; Torres, Victor J; Keestra-Gounder, A Marijke; Pironti, Alejandro; Griffin, Matthew E; Hang, Howard C; Cadwell, Ken
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA that generates NOD2-stimulating muropeptides. NOD2 activation in myeloid cells induced interleukin-1β (IL-1β) secretion to increase the proportion of IL-22-producing CD4+ T helper cells and innate lymphoid cells that promote tissue repair. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
PMID: 37652008
ISSN: 1934-6069
CID: 5618182

Hepatitis C virus care cascade among people who inject drugs in puerto rico: Minimal HCV treatment and substantial barriers to HCV care

Aponte-Meléndez, Yesenia; Mateu-Gelabert, Pedro; Eckhardt, Benjamin; Fong, Chunki; Padilla, Adriana; Trinidad-Martínez, Wanda; Maldonado-Rodríguez, Eric; Agront, Nancy
BACKGROUND/UNASSIGNED:People who inject drugs (PWID) in Puerto Rico are disproportionately affected by the hepatitis C virus (HCV) epidemic. However, there is a scarcity of data on the HCV care cascade among PWID in Puerto Rico. This study aims to describe the HCV cascade of care among PWID in Puerto Rico, identify gaps, and explore barriers to HCV care. METHODS/UNASSIGNED:Participants were recruited using respondent-driven sampling and tested for both HCV antibodies (Ab) and RNA (ribonucleic acid) using rapid testing and dried blood spot samples (DBS). The cascade of care was estimated based on the DBS HCV Ab and RNA results, as well as self-reported data on HCV screening, linkage to care, treatment uptake and sustained virologic response collected through a questionnaire. The cascade was constructed sequentially, with each step using the number of people from the preceding step as the base denominator. The survey also assessed participants' perceived barriers to HCV care. RESULTS/UNASSIGNED:Out of 150 participants, 126 (84%) had previously been HCV screened, 87% (109/126) were HCV Ab positive, 72% (79/109) were RNA positive,48% (38/79) were linked to care, 32% (12/38) initiated treatment, 58% (7/12) finished treatment, and 71% (5/7) achieved SVR. Barriers to HCV care included concerns about drug abstinence requirements, access to transportation, stigma in healthcare settings, and lack of knowledge about HCV treatment sites. CONCLUSION/UNASSIGNED:This study provides insights into the HCV cascade of care among PWID in Puerto Rico for the first time and highlights limited diagnosis, treatment uptake, and barriers to care.
PMCID:10404601
PMID: 37555192
ISSN: 2772-7246
CID: 5591812

Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial

Branche, Angela R; Rouphael, Nadine G; Diemert, David J; Falsey, Ann R; Losada, Cecilia; Baden, Lindsey R; Frey, Sharon E; Whitaker, Jennifer A; Little, Susan J; Anderson, Evan J; Walter, Emmanuel B; Novak, Richard M; Rupp, Richard; Jackson, Lisa A; Babu, Tara M; Kottkamp, Angelica C; Luetkemeyer, Anne F; Immergluck, Lilly C; Presti, Rachel M; Bäcker, Martín; Winokur, Patricia L; Mahgoub, Siham M; Goepfert, Paul A; Fusco, Dahlene N; Malkin, Elissa; Bethony, Jeffrey M; Walsh, Edward E; Graciaa, Daniel S; Samaha, Hady; Sherman, Amy C; Walsh, Stephen R; Abate, Getahun; Oikonomopoulou, Zacharoula; El Sahly, Hana M; Martin, Thomas C S; Kamidani, Satoshi; Smith, Michael J; Ladner, Benjamin G; Porterfield, Laura; Dunstan, Maya; Wald, Anna; Davis, Tamia; Atmar, Robert L; Mulligan, Mark J; Lyke, Kirsten E; Posavad, Christine M; Meagher, Megan A; Stephens, David S; Neuzil, Kathleen M; Abebe, Kuleni; Hill, Heather; Albert, Jim; Telu, Kalyani; Mu, Jinjian; Lewis, Teri C; Giebeig, Lisa A; Eaton, Amanda; Netzl, Antonia; Wilks, Samuel H; Türeli, Sina; Makhene, Mamodikoe; Crandon, Sonja; Montefiori, David C; Makowski, Mat; Smith, Derek J; Nayak, Seema U; Roberts, Paul C; Beigel, John H; ,
Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID50 titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID50 titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037 .
PMID: 37640860
ISSN: 1546-170x
CID: 5605562

Bacterial contact induces polar plug disintegration to mediate whipworm egg hatching

Robertson, Amicha; Sall, Joseph; Venzon, Mericien; Olivas, Janet J; Zheng, Xuhui; Cammer, Michael; Antao, Noelle; Zhou, Chunyi; Devlin, Joseph C; Saes Thur, Rafaela; Bethony, Jeffrey; Nejsum, Peter; Shopsin, Bo; Torres, Victor J; Liang, Feng-Xia; Cadwell, Ken
The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.
PMID: 37738244
ISSN: 1553-7374
CID: 5627842

The urgent need to implement point-of-care RNA testing for hepatitis C virus to support elimination

Kapadia, Shashi N; Jordan, Ashly E; Eckhardt, Benjamin J; Perlman, David C
Hepatitis C virus (HCV) elimination is an important global public health goal. However, the United States (US) is not on track to meet the World Health Organization's 2030 targets for HCV elimination. Recently, the White House proposed an HCV elimination plan that includes point-of-care (POC) HCV RNA testing, which is currently in use in many countries, but is not approved in the US. POC HCV RNA testing is crucial for implementing community-based testing, and for enabling test-and-treat programs, assessing cure, and monitoring for reinfection.. In this commentary, we review the status of POC HCV RNA testing in the US, discuss factors that are needed for successful implementation, and issue specific public health and policy recommendations that would allow for the use of POC HCV RNA testing to support HCV elimination.
PMID: 37633653
ISSN: 1537-6591
CID: 5599142

Discrete immune response signature to SARS-CoV-2 mRNA vaccination versus infection

Ivanova, Ellie N; Devlin, Joseph C; Buus, Terkild B; Koide, Akiko; Cornelius, Amber; Samanovic, Marie I; Herrera, Alberto; Zhang, Chenzhen; Desvignes, Ludovic; Odum, Niels; Ulrich, Robert; Mulligan, Mark J; Koide, Shohei; Ruggles, Kelly V; Herati, Ramin S; Koralov, Sergei B
Both SARS-CoV-2 infection and vaccination elicit potent immune responses. A number of studies have described immune responses to SARS-CoV-2 infection. However, beyond antibody production, immune responses to COVID-19 vaccines remain largely uncharacterized. Here, we performed multimodal single-cell sequencing on peripheral blood of patients with acute COVID-19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by this vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of the B and T cell antigen receptor rearrangement of individual lymphocytes, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. While both infection and vaccination induced robust innate and adaptive immune responses, our analysis revealed significant qualitative differences between the two types of immune challenges. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the observed dramatic upregulation of cytotoxic genes in the peripheral T cells and innate-like lymphocytes in patients but not in immunized subjects. Analysis of B and T cell receptor repertoires revealed that while the majority of clonal B and T cells in COVID-19 patients were effector cells, in vaccine recipients clonally expanded cells were primarily circulating memory cells. Importantly, the divergence in immune subsets engaged, the transcriptional differences in key immune populations, and the differences in maturation of adaptive immune cells revealed by our analysis have far-ranging implications for immunity to this novel pathogen.
PMCID:8077568
PMID: 33907755
ISSN: n/a
CID: 4852132