Try a new search

Format these results:

Searched for:

person:torrej12

in-biosketch:yes

Total Results:

29


Diverse functions for the semaphorin receptor PlexinD1 in development and disease

Gay, Carl M; Zygmunt, Tomasz; Torres-Vazquez, Jesus
Plexins are a family of single-pass transmembrane proteins that serve as cell surface receptors for Semaphorins during the embryonic development of animals. Semaphorin-Plexin signaling is critical for many cellular aspects of organogenesis, including cell migration, proliferation and survival. Until recently, little was known about the function of PlexinD1, the sole member of the vertebrate-specific PlexinD (PlxnD1) subfamily. Here we review novel findings about PlxnD1's roles in the development of the cardiovascular, nervous and immune systems and salivary gland branching morphogenesis and discuss new insights concerning the molecular mechanisms of PlxnD1 activity
PMCID:2993764
PMID: 20880496
ISSN: 1095-564x
CID: 116204

Genetic determinants of hyaloid and retinal vasculature in zebrafish

Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N
BACKGROUND: The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. RESULTS: We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. CONCLUSION: Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease
PMCID:2169232
PMID: 17937808
ISSN: 1471-213x
CID: 95023

A phylogenetically conserved cis-regulatory module in the Msx2 promoter is sufficient for BMP-dependent transcription in murine and Drosophila embryos

Brugger, Sean M; Merrill, Amy E; Torres-Vazquez, Jesus; Wu, Nancy; Ting, Man-Chun; Cho, Jane Y-M; Dobias, Sonia L; Yi, Soyun E; Lyons, Karen; Bell, Jeffery R; Arora, Kavita; Warrior, Rahul; Maxson, Robert
To understand the actions of morphogens, it is crucial to determine how they elicit different transcriptional responses in different cell types. Here, we identify a BMP-responsive enhancer of Msx2, an immediate early target of bone morphogenetic protein (BMP) signaling. We show that the BMP-responsive region of Msx2 consists of a core element, required generally for BMP-dependent expression, and ancillary elements that mediate signaling in diverse developmental settings. Analysis of the core element identified two classes of functional sites: GCCG sequences related to the consensus binding site of Mad/Smad-related BMP signal transducers; and a single TTAATT sequence, matching the consensus site for Antennapedia superclass homeodomain proteins. Chromatin immunoprecipitation and mutagenesis experiments indicate that the GCCG sites are direct targets of BMP restricted Smads. Intriguingly, however, these sites are not sufficient for BMP responsiveness in mouse embryos; the TTAATT sequence is also required. DNA sequence comparisons reveal this element is highly conserved in Msx2 promoters from mammalian orders but is not detectable in other vertebrates or non-vertebrates. Despite this lack of conservation outside mammals, the Msx2 BMP-responsive element serves as an accurate readout of Dpp signaling in a distantly related bilaterian - Drosophila. Strikingly, in Drosophila embryos, as in mice, both TTAATT and GCCG sequences are required for Dpp responsiveness, showing that a common cis-regulatory apparatus can mediate the transcriptional activation of BMP-regulated genes in widely divergent bilaterians
PMID: 15459107
ISSN: 0950-1991
CID: 64499

Semaphorin-plexin signaling guides patterning of the developing vasculature

Torres-Vazquez J; Gitler AD; Fraser SD; Berk JD; Van N Pham; Fishman MC; Childs S; Epstein JA; Weinstein BM
Major vessels of the vertebrate circulatory system display evolutionarily conserved and reproducible anatomy, but the cues guiding this stereotypic patterning remain obscure. In the nervous system, axonal pathways are shaped by repulsive cues provided by ligands of the semaphorin family that are sensed by migrating neuronal growth cones through plexin receptors. We show that proper blood vessel pathfinding requires the endothelial receptor PlexinD1 and semaphorin signals, and we identify mutations in plexinD1 in the zebrafish vascular patterning mutant out of bounds. These results reveal the fundamental conservation of repulsive patterning mechanisms between axonal migration in the central nervous system and vascular endothelium during angiogenesis
PMID: 15239959
ISSN: 1534-5807
CID: 64500

Making waves in Madison: the 6th International Meeting on Zebrafish Development and Genetics

Kamei, Makoto; Kidd, Kameha R; Torres-Vazquez, Jesus; Weinstein, Brant M
PMID: 18248226
ISSN: 1557-8542
CID: 95022

Molecular distinction between arteries and veins

Torres-Vazquez, Jesus; Kamei, Makoto; Weinstein, Brant M
The vertebrate vascular system is essential for the delivery and exchange of gases, hormones, metabolic wastes and immunity factors. These essential functions are carried out in large part by two types of anatomically distinct blood vessels, namely arteries and veins. Previously, circulatory dynamics were thought to play a major role in establishing this dichotomy, but recently it has become clear that arterial and venous endothelial cells are molecularly distinct even before the output of the first embryonic heartbeat, thus revealing the existence of genetic programs coordinating arterial-venous differentiation. Here we review some of the molecular mechanisms involved in this process
PMID: 14505031
ISSN: 0302-766x
CID: 64501

The transcription factor Schnurri plays a dual role in mediating Dpp signaling during embryogenesis

Torres-Vazquez, J; Park, S; Warrior, R; Arora, K
Decapentaplegic (Dpp), a homolog of vertebrate bone morphogenic protein 2/4, is crucial for embryonic patterning and cell fate specification in Drosophila. Dpp signaling triggers nuclear accumulation of the Smads Mad and Medea, which affect gene expression through two distinct mechanisms: direct activation of target genes and relief of repression by the nuclear protein Brinker (Brk). The zinc-finger transcription factor Schnurri (Shn) has been implicated as a co-factor for Mad, based on its DNA-binding ability and evidence of signaling dependent interactions between the two proteins. A key question is whether Shn contributes to both repression of brk as well as to activation of target genes. We find that during embryogenesis, brk expression is derepressed in shn mutants. However, while Mad is essential for Dpp-mediated repression of brk, the requirement for shn is stage specific. Analysis of brk; shn double mutants reveals that upregulation of brk does not account for all aspects of the shn mutant phenotype. Several Dpp target genes are expressed at intermediate levels in double mutant embryos, demonstrating that shn also provides a brk-independent positive input to gene activation. We find that Shn-mediated relief of brk repression establishes broad domains of gene activation, while the brk-independent input from Shn is crucial for defining the precise limits and levels of Dpp target gene expression in the embryo
PMID: 11290303
ISSN: 0950-1991
CID: 72059

The zinc finger protein schnurri acts as a Smad partner in mediating the transcriptional response to decapentaplegic

Dai, H; Hogan, C; Gopalakrishnan, B; Torres-Vazquez, J; Nguyen, M; Park, S; Raftery, L A; Warrior, R; Arora, K
In Drosophila, a BMP-related ligand Decapentaplegic (Dpp) is essential for cell fate specification during embryogenesis and in imaginal disc development. Dpp signaling culminates in the phosphorylation and nuclear translocation of Mothers against dpp (Mad), a receptor-specific Smad that can bind DNA and regulate the transcription of Dpp-responsive genes. Genetic analysis has implicated Schnurri (Shn), a zinc finger protein that shares homology with mammalian transcription factors, in the Dpp signal transduction pathway. However, a direct role for Shn in regulating the transcriptional response to Dpp has not been demonstrated. In this study we show that Shn acts as a DNA-binding Mad cofactor in the nuclear response to Dpp. Shn can bind DNA in a sequence-specific manner and recognizes sites within a well-characterized Dpp-responsive promoter element, the B enhancer of the Ultrabithorax (Ubx) gene. The Shn-binding sites are relevant for in vivo expression, since mutations in these sites affect the ability of the enhancer to respond to Dpp. Furthermore we find that Shn and Mad can interact directly through discrete domains. To examine the relative contribution of the two proteins in the regulation of endogenous Dpp target genes we developed a cell culture assay and show that Shn and Mad act synergistically to induce transcription. Our results suggest that cooperative interactions between these two transcription factors could play an important role in the regulation of Dpp target genes. This is the first evidence that Dpp/BMP signaling in flies requires the direct interaction of Mad with a partner transcription factor
PMID: 11071761
ISSN: 0012-1606
CID: 72061

schnurri is required for dpp-dependent patterning of the Drosophila wing

Torres-Vazquez, J; Warrior, R; Arora, K
The BMP-related ligand Decapentaplegic (Dpp) has a well-characterized role in pattern formation during Drosophila embryogenesis and in larval development. Previous work has shown that transcription of Dpp-responsive genes requires the activity of the BMP-specific Smad, Mothers against dpp (Mad). In this study we investigated the role of the zinc finger transcription factor Schnurri (Shn) in mediating the nuclear response to Dpp during adult patterning. Using clonal analysis, we show that wing imaginal disc cells mutant for shn fail to transcribe the genes spalt, optomotor blind, vestigial, and Dad, that are known to be induced by dpp signaling. shn clones also ectopically express brinker, a gene that is downregulated in response to dpp, thus implicating Shn in both activation and repression of Dpp target genes. We demonstrate that loss of shn activity affects anterior-posterior patterning and cell proliferation in the wing blade, in a manner that reflects the graded requirement for Dpp in these processes. Furthermore, we find that shn is expressed in the pupal wing and plays a distinct role in mediating dpp-dependent vein differentiation at this stage. The absence of shn activity results in defects that are similar in nature and severity to those caused by elimination of Mad, suggesting that Shn has an essential role in dpp signal transduction in the developing wing. Our data are consistent with a model in which Shn acts as a cofactor for Mad
PMID: 11071762
ISSN: 0012-1606
CID: 72060