Try a new search

Format these results:

Searched for:

person:wurmbe01

in-biosketch:yes

Total Results:

23


Verification of eye and skin color predictors in various populations

Pneuman, Amanda; Budimlija, Zoran M; Caragine, Theresa; Prinz, Mechthild; Wurmbach, Elisa
Validation of testing methods is an essential feature in all scientific endeavors, but it is particularly important in forensics. Due to the sensitive nature of these investigations and the limited sample size it is crucial to validate all employed procedures. This includes novel forensic phenotypic DNA tests, to learn more of their capabilities and limitations before incorporating them as routine methods. Ideally, validations are performed on large sample sets that mimic real cases. Recently, three phenotypic predictors, two for eye colors and one for skin color have been published (Spichenok et al., 2011; Walsh et al., 2011). These predictors are well-defined by a selection of single nucleotide polymorphisms (SNPs) and unambiguous instructions on how to interpret the genotypes. These standardized approaches have the advantages that they can be applied in diverse laboratories leading to the same outcome and offer the opportunity for validation. For these tests to be used on the characterization of human remains, they should be validated on various populations to perform reliably without prior knowledge of ethnic origin. Here, in this study, these eye and skin color predictors were validated on new sample sets and it could be confirmed that they can be applied in various populations, including African-American, South Asian (dark), East Asian (light), European, and mixed populations. The outputs were either predictive or inconclusive. Predictions were then compared against the actual eye and skin colors of the tested individuals. The error-rates varied; they were low for the predictors that describe the eye and skin color exclusively (non-brown or non-blue and non-white or non-dark, respectively) and higher for the predictor that describes individual eye colors (blue, brown, and intermediate/green), because of uncertainties with the green eye color prediction. Our investigation deepens the insight for these predictors and adds new information.
PMID: 22284939
ISSN: 1344-6223
CID: 508932

Prediction of eye and skin color in diverse populations using seven SNPs

Spichenok, Olga; Budimlija, Zoran M; Mitchell, Adele A; Jenny, Andreas; Kovacevic, Lejla; Marjanovic, Damir; Caragine, Theresa; Prinz, Mechthild; Wurmbach, Elisa
An essential component in identifying human remains is the documentation of the decedent's visible characteristics, such as eye, hair and skin color. However, if a decedent is decomposed or only skeletal remains are found, this critical, visibly identifying information is lost. It would be beneficial to use genetic information to reveal these visible characteristics. In this study, seven single nucleotide polymorphisms (SNPs), located in and nearby genes known for their important role in pigmentation, were validated on 554 samples, donated from non-related individuals of various populations. Six SNPs were used in predicting the eye color of an individual, and all seven were used to describe the skin coloration. The outcome revealed that these markers can be applied to all populations with very low error rates. However, the call-rate to determine the skin coloration varied between populations, demonstrating its complexity. Overall, these results prove the importance of these seven SNPs for potential forensic tests
PMID: 21050833
ISSN: 1878-0326
CID: 142144

De-regulation of common housekeeping genes in hepatocellular carcinoma

Waxman, Samuel; Wurmbach, Elisa
BACKGROUND: Tumorigenesis is associated with changes in gene expression and involves many pathways. Dysregulated genes include 'housekeeping' genes that are often used for normalization for quantitative real-time RT-PCR (qPCR), which may lead to unreliable results. This study assessed eight stages of hepatitis C virus (HCV) induced hepatocellular carcinoma (HCC) to search for appropriate genes for normalization. RESULTS: Gene expression profiles using microarrays revealed differential expression of most 'housekeeping' genes during the course of HCV-HCC, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin (ACTB), genes frequently used for normalization. QPCR reactions confirmed the regulation of these genes. Using them for normalization had strong effects on the extent of differential expressed genes, leading to misinterpretation of the results. CONCLUSION: As shown here in the case of HCV-induced HCC, the most constantly expressed gene is the arginine/serine-rich splicing factor 4 (SFRS4). The utilization of at least two genes for normalization is robust and advantageous, because they can compensate for slight differences of their expression when not co-regulated. The combination of ribosomal protein large 41 (RPL41) and SFRS4 used for normalization led to very similar results as SFRS4 alone and is a very good choice for reference in this disease as shown on four differentially expressed genes
PMCID:1937003
PMID: 17640361
ISSN: 1471-2164
CID: 97739

Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma

Wurmbach, Elisa; Chen, Ying-bei; Khitrov, Greg; Zhang, Weijia; Roayaie, Sasan; Schwartz, Myron; Fiel, Isabel; Thung, Swan; Mazzaferro, Vincenzo; Bruix, Jordi; Bottinger, Erwin; Friedman, Scott; Waxman, Samuel; Llovet, Josep M
Although HCC is the third-leading cause of cancer-related deaths worldwide, there is only an elemental understanding of its molecular pathogenesis. In western countries, HCV infection is the main etiology underlying this cancer's accelerating incidence. To characterize the molecular events of the hepatocarcinogenic process, and to identify new biomarkers for early HCC, the gene expression profiles of 75 tissue samples were analyzed representing the stepwise carcinogenic process from preneoplastic lesions (cirrhosis and dysplasia) to HCC, including 4 neoplastic stages (very early HCC to metastatic tumors) from patients with HCV infection. We identified gene signatures that accurately reflect the pathological progression of disease at each stage. Eight genes distinguish between control and cirrhosis, 24 between cirrhosis and dysplasia, 93 between dysplasia and early HCC, and 9 between early and advanced HCC. Using quantitative real-time reverse-transcription PCR, we validated several novel molecular tissue markers for early HCC diagnosis, specifically induction of abnormal spindle-like, microcephaly-associated protein, hyaluronan-mediated motility receptor, primase 1, erythropoietin, and neuregulin 1. In addition, pathway analysis revealed dysregulation of the Notch and Toll-like receptor pathways in cirrhosis, followed by deregulation of several components of the Jak/STAT pathway in early carcinogenesis, then upregulation of genes involved in DNA replication and repair and cell cycle in late cancerous stages. CONCLUSION: These findings provide a comprehensive molecular portrait of genomic changes in progressive HCV-related HCC
PMID: 17393520
ISSN: 0270-9139
CID: 97737

A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis

Llovet, Josep M; Chen, Yingbei; Wurmbach, Elisa; Roayaie, Sasan; Fiel, M Isabel; Schwartz, Myron; Thung, Swan N; Khitrov, Gregory; Zhang, Weijia; Villanueva, Augusto; Battiston, Carlo; Mazzaferro, Vincenzo; Bruix, Jordi; Waxman, Samuel; Friedman, Scott L
BACKGROUND & AIMS: Small liver nodules approximately 2 cm are difficult to characterize by radiologic or pathologic examination. Our aim was to identify a molecular signature to diagnose early hepatocellular carcinoma (HCC). METHODS: The transcriptional profiles of 55 candidate genes were assessed by quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) in 17 dysplastic nodules (diameter, 10 mm) and 20 early HCC (diameter, 18 mm) from HCV cirrhotic patients undergoing resection/transplantation and 10 nontumoral cirrhotic tissues and 10 normal liver tissues. Candidate genes were confirmed by quantitative RT-PCR in 20 advanced HCCs and by immunohistochemistry in 75 samples and validated in an independent set of 29 samples (dysplastic nodules [10] and small HCC [19; diameter, 20 mm]). RESULTS: Twelve genes were significantly, differentially expressed in early HCCs compared with dysplastic nodules (>2-fold change; area under the receiver operating characteristic curve > or =0.8): this included TERT, GPC3, gankyrin, survivin, TOP2A, LYVE1, E-cadherin, IGFBP3, PDGFRA, TGFA, cyclin D1, and HGF. Logistic regression analysis identified a 3-gene set including GPC3 (18-fold increase in HCC, P = .01), LYVE1 (12-fold decrease in HCC, P = .0001), and survivin (2.2-fold increase in HCC, P = .02), which had a discriminative accuracy of 94%. The validity of the gene signature was confirmed in a prospective testing set. GPC3 immunostaining was positive in all HCCs and negative in dysplastic nodules (22/22 vs 0/14, respectively, P < .001). Nuclear staining for survivin was positive in 12 of 13 advanced HCC cases and in 1 of 9 early tumors. CONCLUSIONS: Molecular data based on gene transcriptional profiles of a 3-gene set allow a reliable diagnosis of early HCC. Immunostaining of GPC3 confirms the diagnosis of HCC
PMID: 17087938
ISSN: 0016-5085
CID: 97735

Acute induction of gene expression in brain and liver by insulin-induced hypoglycemia

Mastaitis, Jason W; Wurmbach, Elisa; Cheng, Hui; Sealfon, Stuart C; Mobbs, Charles V
The robust neuroendocrine counterregulatory responses induced by hypoglycemia protect the brain by restoring plasma glucose, but little is known about molecular responses to hypoglycemia that may also be neuroprotective. To clarify these mechanisms, we examined gene expression in hypothalamus, cortex, and liver 3 h after induction of mild hypoglycemia by a single injection of insulin, using cDNA microarray analysis and quantitative real-time PCR. Real-time PCR corroborated the induction of six genes (angiotensinogen, GLUT-1, inhibitor of kappaB, inhibitor of DNA binding 1 [ID-1], Ubp41, and mitogen-activated protein kinase phosphatase-1 [MKP-1]) by insulin-induced hypoglycemia in the hypothalamus: five of these six genes in cortex and three (GLUT-1, angiotensinogen, and MKP-1) in liver. The induction was due to hypoglycemia and not hyperinsulinemia, since fasting (characterized by low insulin and glucose) also induced these genes. Four of these genes (angiotensinogen, GLUT-1, ID-1, and MKP-1) have been implicated in enhancement of glucose availability, which could plausibly serve a neuroprotective role during acute hypoglycemia but, if persistent, could also cause glucose-sensing mechanisms to overestimate plasma glucose levels, potentially causing hypoglycemia-induced counterregulatory failure. Although using cDNA microarrays with more genes, or microdissection, would presumably reveal further responses to hypoglycemia, these hypoglycemia-induced genes represent useful markers to assess molecular mechanisms mediating cellular responses to hypoglycemia
PMID: 15793232
ISSN: 0012-1797
CID: 97729

Gene expression profiles in hepatocellular carcinoma: not yet there [Editorial]

Llovet, Josep M; Wurmbach, Elisa
PMID: 15288485
ISSN: 0168-8278
CID: 97726

Mining microarrays for metabolic meaning: nutritional regulation of hypothalamic gene expression

Mobbs, Charles V; Yen, Kelvin; Mastaitis, Jason; Nguyen, Ha; Watson, Elizabeth; Wurmbach, Elisa; Sealfon, Stuart C; Brooks, Andrew; Salton, Stephen R J
DNA microarray analysis has been used to investigate relative changes in the level of gene expression in the CNS, including changes that are associated with disease, injury, psychiatric disorders, drug exposure or withdrawal, and memory formation. We have used oligonucleotide microarrays to identify hypothalamic genes that respond to nutritional manipulation. In addition to commonly used microarray analysis based on criteria such as fold-regulation, we have also found that simply carrying out multiple t tests then sorting by P value constitutes a highly reliable method to detect true regulation, as assessed by real-time polymerase chain reaction (PCR), even for relatively low abundance genes or relatively low magnitude of regulation. Such analyses directly suggested novel mechanisms that mediate effects of nutritional state on neuroendocrine function and are being used to identify regulated gene products that may elucidate the metabolic pathology of obese ob/ob, lean Vgf-/Vgf-, and other models with profound metabolic impairments
PMID: 15176466
ISSN: 0364-3190
CID: 97724

Focused microarray analysis

Wurmbach, Elisa; Yuen, Tony; Sealfon, Stuart C
We describe detailed protocols and results with an integrated platform for studying relative transcript expression, including microarray design and fabrication, analysis and calibration algorithms, and high throughput quantitative real-time PCR. This approach optimizes sensitivity and accuracy while controlling the cost of experiments. A high quality cDNA array was fabricated using a restricted number of carefully selected transcripts with each clone printed in triplicate. This focused array facilitated both repeated measurement and replicate experiments. Following normalization and differential expression analysis, we found that experiments with this array identified differentially expressed transcripts with a high degree of accuracy and with high sensitivity to low levels of differential expression. Using a calibration algorithm improved the accuracy of the array in quantifying the relative level of transcript expression. All differentially expressed transcripts identified by the array were independently tested using high throughput quantitative real-time PCR assays. This approach reliably identified transcripts having as low as 1.3-fold differences in transcript expression between RNA samples from treatment- and control groups and was applicable to highly heterogenous tissue sources such as hypothalamus and cerebral cortex
PMID: 14597315
ISSN: 1046-2023
CID: 97721

Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex

Gonzalez-Maeso, Javier; Yuen, Tony; Ebersole, Barbara J; Wurmbach, Elisa; Lira, Alena; Zhou, Mingming; Weisstaub, Noelia; Hen, Rene; Gingrich, Jay A; Sealfon, Stuart C
Most neuropharmacological agents and many drugs of abuse modulate the activity of heptahelical G-protein-coupled receptors. Although the effects of these ligands result from changes in cellular signaling, their neurobehavioral activity may not correlate with results of in vitro signal transduction assays. 5-Hydroxytryptamine 2A receptor (5-HT2AR) partial agonists that have similar pharmacological profiles differ in the behavioral responses they elicit. In vitro studies suggest that different agonists acting at the same receptor may establish distinct patterns of signal transduction. Testing this hypothesis in the brain requires a global signal transduction assay that is applicable in vivo. To distinguish the cellular effects of the different 5-HT2AR agonists, we developed an assay for global signal transduction on the basis of high throughput quantification of rapidly modulated transcripts. Study of the responses to agonists in human embryonic kidney 293 cells stably expressing 5-HT2ARs demonstrated that each agonist elicits a distinct transcriptome fingerprint. We therefore studied behavioral and cortical signal transduction responses in wild-type and 5-HT2AR null-mutant mice. The hallucinogenic chemicals (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) and lysergic acid diethylamide (LSD) stimulated a head-twitch behavioral response that was not observed with the nonhallucinogenic lisuride hydrogen maleate (LHM) and was absent in receptor null-mutant mice. We also found that DOI, LSD, and LHM each induced distinct transcriptome fingerprints in somatosensory cortex that were absent in 5-HT2AR null-mutants. Moreover, DOI and LSD showed similarities in the transcriptome fingerprints obtained that were not observed with the behaviorally inactive drug LHM. Our results demonstrate that chemicals acting at the 5-HT2AR induce specific cellular response patterns in vivo that are reflected in unique changes in the somatosensory cortex transcriptome
PMID: 14523084
ISSN: 1529-2401
CID: 97719